
www.arrowhead.eu

fPVN

Arrowhead fPVN -
flexible Production Value Networks

1

www.arrowhead.eu

fPVN

2

Overview
Arrowhead fPVN is a European project funded by the KDT-JU

• 30M€
• 43 Partners
• 12 Countries

Participants from
• Automotive services
• Aerospace services,
• Green energy conversion and
• Process industry production.

www.arrowhead.eu fPVN

3

Our Vision

Doubling European industrial productivity by
applying transformative, autonomous and evolvable
information interoperability for resilient and adaptive
production value networks.

Production Value Networks
Multi Stakeholder Operation

Owner & Operators
EPC (Engineering, Procurements & Consultancy) and Supply Chain
Customers

Extensive Exchange of information between each other:
Not standardized
Re-engineered
Time Consuming
Inefficient

Business Logic and Ecosystems differs between Sectors

www.arrowhead.eu

fPVN

5

Grand Challenge
Key technology gaps identified:

Too many and non-interoperable standardized data models

Non-mature technology for machine translation in-between data models

Lack of open architectures and implementation platforms for
interoperable fPVNs, having properties such as:
• Flexible,
• Secure,
• Scalable,
• Autonomous, and
• Evolvable

Technology Pillars
Arrowhead fPVN consortium has identified the following three
technology pillars a combination of which can substantially boost the
interoperability in PVNs:

• Microservice paradigm
An open, extensible solution architecture with reference implementation platform enabling
seamless information interoperability between involved entities, operational technologies
(OT) and information technology (IT).

• Major industrial data models (preferably standardized)
Promoting the data models of a few major standards, between which autonomous translation
is enabled and integrated, to automation/digitalization solutions using the microservices
architecture and associated implementation platform.

• Automated translations between data/information models
Automated information model translation between the major data modelling languages
enabling on the fly understanding of the entities in PVNs.

This research work has been funded by the European Commission, through the European H2020
research and innovation programme, ECSEL Joint Undertaking, and National Funding Authorities
from 18 involved countries under the research project Arrowhead Tools with Grant Agreement
no. 826452.

Our stepping stone
Arrowhead Tools, …

Coordinator Prof. Jerker Delsing

www.arrowhead.eu

8

IoT/SoS and Industry 4.0/5.0 project time line
FP7, H2020, Artemis-JU,
ECSEL JU, KDT-JU
investments

TRL

2010 2020

SOFIA

Socrades

IMC-
AESOP

Productive4.0
FAR-EDGE

MIDIH

Arrowhead
tools

Arrowhead

EMC2/
Mantis/
Opti/
Desire

IoT/SoS products on the
market based on
Eclipse Arrowhead framework
PLC, SCADA, MES, Digital Twins, …..

Arrowhead
fPVN

AIMS5.0

2030

www.arrowhead.eu

FLEXIBLE DIGITALISATION and AUTOMATION
OT meets IT

IT

OT

www.arrowhead.eu

Primary objective

20-50% reduction of engineering costs of automation and
digitalisation solutions in industry

11

www.arrowhead.eu

fPVN

12

Microservice paradigm
Approach

Highly modularised software with well defined microservice
interfaces

Modularisation through
Microsystems producing and consuming well defined

microservices and associated interfaces

Starting point is:
Eclipse Arrowhead architecture and reference

implementation

www.arrowhead.eu

fPVN

13

Microservice paradigm capabilities
Discovery:

find the consumable services
Orchestration:

centrally managing what systems consume what services.

Authorisation:
regulating how systems are allowed to consume what services,

Interoperability - Protocol translation

Translation between different protocols
HTTP, CoAP, MQTT, Websocket

<<system>>
Translation

www.arrowhead.eu

Interoperability
Multi-protocol, multi-technology
Support core systems models

Translator
HTTP (REST), CoAP, MQTT, (Websocket)

Adaptors to other communication protocols
OPC-UA <-> Arrowhead
Modbus TCP <-> Arrowhead
Z-wave <-> Arrowhead
ZigBee <-> Arrowhead
IO-link <-> Arrowhead
Thing of Web <-> Arrowhead

Datamodel adaptor
ISO 10303 - STEP AP-242

www.arrowhead.eu fPVN

16

Datamodel interoperability
Very complex problem

www.arrowhead.eu

fPVN

17

Major industrial data models
Major industrial standards like:

ISO10303, ISO 15926, ISO 12006, …

Enabling data model interoperability and interaction reasoning
based on e.g. semantic web

How can major industrial standards be updates to enable wider
interoperability?

www.arrowhead.eu

Data model interoperability?

Fig. 3: Illustration of the vector representation of the messages.

and format, these messages represent the same information
differently. For A-type messages, the name "n" encodes
location and type of sensor, whereas the name "bn" in B-
type messages only encode type of sensor. Location is instead
encoded using the longitude "Lon" and Latitude "Lat" with
a coordinate system specific to this simulation. The units "u"
are different for both message types, and the values "v"

have two modes: temperature in Kelvin (A-type) or degrees
Celsius (B-type), and actuation in Watts (A-type) or percent of
maximum power (B-type). 60000 randomly picked messages
of each type were put in a training dataset, and another 20000
messages were put in validation and testing datasets, each
containing 10000 messages.

To use these messages in a neural network, we transformed
them from strings to vectors containing only the dynamic
information. We separate the message fields into two kinds,
categorical and continuous. The value fields are continuous,
due to them representing a continuous variable, and the "n",
"u" (A-type), "bn", first "u", and second and third "v"

(B-type) are categorical fields because these fields can take
one of a small number of discrete values. Each value field has
a corresponding 1-hot vector representation, and the complete
message vectors are concatenations of the 1-hot representa-
tions of the categorical values, and the value of the continuous
fields. These vectors are illustrated in Figure 3.

B. Autoencoder with Backtranslation
The tested machine learning models are of two kinds, the

first kind of model has one autoencoder (one encoder and one
decoder) per message type, which we call a non-shared model.
The second kind of model has encoders and decoders like
the first, but those encoders and decoders share parameters,

Listing 1: Example messages.
CPS A message:

[

{"n": "OO_temp_sensor",

"t": 318350,

"u": "K",

"v": 263.4948599934143}

]

CPS B message:

[

{"bn": "temp_sensor", "bt": 321680},

{"u": "Cel", "v": 20.970178532724503},

{"u": "Lon", "v": "1"},

{"u": "Lat", "v": "-1"}

]

Fig. 4: Illustration of model architecture, with the outputs
produced during training

namely the layers closest to the latent representations. We call
this a shared model. Sharing parameters like this has been
shown to increase the performance of backtranslation strate-
gies in natural language translation [27]. For reference, we
also compare these unsupervised models to supervised models
translating from format A to B. The supervised models also
have the same encoder-decoder structure as the unsupervised
models to make the comparison between them fair, and to
test if model translation is at all possible using this translation
mechanism.

We vary the size of the encoders and decoders, between
one layer of 10 parameters, or two layers of 10 and 9
parameters. The latent space has 8 dimensions across all tested
models, which is more than sufficient to encode the messages
considered here. The shared models always have three layers,
which correspond in size to the innermost layers of the 2-
layer model. During training, four outputs are produced: One
autoencoded message m̂auto and one backtranslated message
m̂back of type A and B respectively, see Figure 4.

C. Training Procedure

Model parameters are updated using three different strate-
gies. The first is to update all parameters in both the autoen-
coding and backtranslation step, which we call strategy 1. The
second strategy is to update all parameters in the autoencoding
step, and decoder parameters in the backtranslation step, which
we call strategy 2. In strategy 3 the encoder parameters are
updated in the autoencoding step, the decoder parameters in
the backtranslation step, but the shared parameters are updated
in both steps. Since strategy 3 uses the shared parameters, it
is only tested on the shared model.

All unsupervised models use the same loss function

L =
1

2

X

S={A,B}

1

NS
cat + 1

�
LS
cat + LS

con

�
, (1)

where LS
cat is the sum of the categorical cross-entropy loss

for each categorical field in message type S and LS
con is the

mean-square loss for the continuous field message type S.
Furthermore, the models are tested on the accuracy, i.e. the
average accuracy for all categorical fields, and the mean square
error of the continuous fields.

All models use an Adam optimizer with Pytorch with weight
decay of 0.0001, with different learning rates between the
supervised and unsupervised models. The supervised models
use a flat learning rate of 0.01, and the unsupervised models

www.arrowhead.eu

Data model interoperability

Fig. 3: Illustration of the vector representation of the messages.

and format, these messages represent the same information
differently. For A-type messages, the name "n" encodes
location and type of sensor, whereas the name "bn" in B-
type messages only encode type of sensor. Location is instead
encoded using the longitude "Lon" and Latitude "Lat" with
a coordinate system specific to this simulation. The units "u"
are different for both message types, and the values "v"

have two modes: temperature in Kelvin (A-type) or degrees
Celsius (B-type), and actuation in Watts (A-type) or percent of
maximum power (B-type). 60000 randomly picked messages
of each type were put in a training dataset, and another 20000
messages were put in validation and testing datasets, each
containing 10000 messages.

To use these messages in a neural network, we transformed
them from strings to vectors containing only the dynamic
information. We separate the message fields into two kinds,
categorical and continuous. The value fields are continuous,
due to them representing a continuous variable, and the "n",
"u" (A-type), "bn", first "u", and second and third "v"

(B-type) are categorical fields because these fields can take
one of a small number of discrete values. Each value field has
a corresponding 1-hot vector representation, and the complete
message vectors are concatenations of the 1-hot representa-
tions of the categorical values, and the value of the continuous
fields. These vectors are illustrated in Figure 3.

B. Autoencoder with Backtranslation
The tested machine learning models are of two kinds, the

first kind of model has one autoencoder (one encoder and one
decoder) per message type, which we call a non-shared model.
The second kind of model has encoders and decoders like
the first, but those encoders and decoders share parameters,

Listing 1: Example messages.
CPS A message:

[

{"n": "OO_temp_sensor",

"t": 318350,

"u": "K",

"v": 263.4948599934143}

]

CPS B message:

[

{"bn": "temp_sensor", "bt": 321680},

{"u": "Cel", "v": 20.970178532724503},

{"u": "Lon", "v": "1"},

{"u": "Lat", "v": "-1"}

]

Fig. 4: Illustration of model architecture, with the outputs
produced during training

namely the layers closest to the latent representations. We call
this a shared model. Sharing parameters like this has been
shown to increase the performance of backtranslation strate-
gies in natural language translation [27]. For reference, we
also compare these unsupervised models to supervised models
translating from format A to B. The supervised models also
have the same encoder-decoder structure as the unsupervised
models to make the comparison between them fair, and to
test if model translation is at all possible using this translation
mechanism.

We vary the size of the encoders and decoders, between
one layer of 10 parameters, or two layers of 10 and 9
parameters. The latent space has 8 dimensions across all tested
models, which is more than sufficient to encode the messages
considered here. The shared models always have three layers,
which correspond in size to the innermost layers of the 2-
layer model. During training, four outputs are produced: One
autoencoded message m̂auto and one backtranslated message
m̂back of type A and B respectively, see Figure 4.

C. Training Procedure

Model parameters are updated using three different strate-
gies. The first is to update all parameters in both the autoen-
coding and backtranslation step, which we call strategy 1. The
second strategy is to update all parameters in the autoencoding
step, and decoder parameters in the backtranslation step, which
we call strategy 2. In strategy 3 the encoder parameters are
updated in the autoencoding step, the decoder parameters in
the backtranslation step, but the shared parameters are updated
in both steps. Since strategy 3 uses the shared parameters, it
is only tested on the shared model.

All unsupervised models use the same loss function

L =
1

2

X

S={A,B}

1

NS
cat + 1

�
LS
cat + LS

con

�
, (1)

where LS
cat is the sum of the categorical cross-entropy loss

for each categorical field in message type S and LS
con is the

mean-square loss for the continuous field message type S.
Furthermore, the models are tested on the accuracy, i.e. the
average accuracy for all categorical fields, and the mean square
error of the continuous fields.

All models use an Adam optimizer with Pytorch with weight
decay of 0.0001, with different learning rates between the
supervised and unsupervised models. The supervised models
use a flat learning rate of 0.01, and the unsupervised models

Same ontology
Same data
Do not look the same!!

2020

www.arrowhead.eu

fPVN

20

Automated translations between data/
information models
Approaches

Super ontology

ML/AI based translation

Model based translation

www.arrowhead.eu

fPVN

21

Automated translations between data/
information models
ML/AI based translation

CPS A
xA,GA,mA

uA, yA

CPS B
xB ,GB ,mB

uB , yB

TAB
mA m̂B

u, y

Fig. 1: Model of communicating cyber-physical systems (CPS)
with different data representations and semantic definitions
that interact in a physical environment (gray) and service-
oriented architecture (white) via messages m translated by a
function TAB .

research field of dynamic and operational interoperability in
SOA lacks a precise mathematical formulation and consensus
about the key problem(s). Therefore, we approach the transla-
tion problem by formulating it in precise mathematical terms
that can be mapped to machine learning tasks.

We define the M2M interoperability problem in terms of
translator functions, TAB , which map messages, mA, from
one domain named CPS A to messages in another domain,
mB , named CPS B, see Figure 1. The translators can be arbi-
trarily complex functions that are generated as integrated parts
of the overall SOA, thereby maintaining a modular architecture
as in the case of engineered adapters. In general, the translated
messages, m̂B , cannot be semantically and otherwise identical
to the messages communicated within CPS B, mB , but we
can optimize the translator functions to make the error small
with respect to an operational loss or utility function. In the
following, we elaborate on the latter point and introduce the
additional symbols and relationships of the model as the basis
for defining translator learning tasks, which in principle can
be addressed with machine learning methods.

The model is divided in three levels: cyber (white), physical
representation (light gray) and the shared physical environment
(gray), see Figure 1. At the cyber level, the graphs GA and GB

define all discrete symbolic and sub-symbolic metadata that is
specific for CPS A and CPS B, respectively. For example,
the nodes and edges of these graphs can represent subject,
predicate, and object semantic triples defined in the Resource
Description Framework (RDF). Each CPS also has discrete
internal states, xA and xB respectively, such as the computer
program variables of all devices in a CPS, which are not
directly readable or writeable in the SOA but may be read
and modified indirectly via the messages and services. The
environment has inputs, u, which can be affected by actuator
devices, and outputs, y, which can be measured with sensor
devices. In CPS A, the outputs of the sensor devices are
represented at the cyber level as discrete variables yA and the
actuators are controlled by discrete variables uA, and similarly
for CPS B. From the viewpoint of causality, u influences y
and thus changes of elements of uA may influence the values
of elements in both yA and yB , and vice versa.

Messages are generated by encoder functions on the form

mA ← EA(uA, yA, xA;GA), (1)

which typically are implemented in the form of computer

programs. Similarly, the internal states are updated by decoder
functions

(xA, uA)←DA(mA;xA, uA, yA;GA), (2)

which are matched to the corresponding encoder functions.
However, a decoder DB can in general not be combined with
an encoder EA, and vice versa.

Although some technical details and challenges are hidden
in this abstract model (an example of the details and chal-
lenges using a rule-based approach can be found in [13]),
the model enables us to define concepts and relationships
that otherwise are ambiguous and described differently in the
literature depending on the context. The task to model dynamic
relationships between u and y in terms of uA and yA (or uB

and yB etc) is the central problem of system identification
[14]. The task to model and control one CPS in terms of the
relationships between uA, yA, xA and sometimes also GA

is more complex [15] and typically involves hybrid models
with state-dependent dynamic descriptions. This is a central
problem in automatic control and CPS engineering.

Symbol grounding [16] refers to the relations between a
symbol defined by GA and the related discrete values of{xA, uA, yA} (similarly for GB) and the property of the
environment {u, y} that the symbol represents. A ground-
ing problem appears when a symbol defined in GA have
an underfitted relationship to the referenced property of the
environment represented via {xA, uA, yA} (similarly for GB),
such that symbols in GA and GB cannot be conclusively
compared for similarity although both systems are defined in
the same environment. Therefore, symbol grounding is just as
relevant for translator learning as it is for reliable inference in
cognitive science and artificial intelligence.

Listing 1 presents two examples of SenML messages that
are constructed to illustrate the character of a semantic trans-
lation problem, m̂B = TAB(mA). Both messages encode
information about the temperature in one office at our uni-
versity and thus represents related physical properties. A
and B can for example refer to the heating and ventilation
systems in the office, respectively, and thus the temperatures
are not necessarily identical. The message from System A
includes the service URI and the time, longitude and latitude
of the temperature measurement with unit ‘K’ for Kelvin and
numeric value 293. The message from System B includes the

Listing 1: Two semantically similar but machine-incompatible
messages. Parts with the same color describe the same concept,
property or object.
System A message:
[{"bn":"127.0.0.1/temp-service","bt":1549359472},

{"u":"lon","v":65.61721},
{"u":"lat","v":22.13683},
{"u":"K","v",253}]

System B message:
[{"n":"office-A2312-temp-sensor",

"u":"Cel",
"v":-20.4,
"t":1549359472}]

J. Nilsson, F. Sandin and J. Delsing, "Interoperability and machine-to-machine translation model with mappings
to machine learning tasks," 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki,
Finland, 2019, pp. 284-289.

www.arrowhead.eu

AI based data model translation

CPS A

Message
space A

EA

DA CPS B

Message
space B

EB

DBzt

GA GB, J

Message
space A

EA

DA CPS B

Message
space B

EB

DB

Latent space
 zt

u, y

CPS A

Environment

Nilsson, J. (2019). System of Systems Interoperability Machine Learning Model (Licentiate
dissertation). Luleå University of Technology. Retrieved from http://urn.kb.se/resolve?
urn=urn:nbn:se:ltu:diva-76229

www.arrowhead.eu

fPVN

23

Automated translations between data/
information models
Super ontology

• From producer ontology based data model
• To super ontology based data model
• To Target ontology based data model

Producer
data
model

Super
ontology Consumer

data
model

www.arrowhead.eu

fPVN

24

Automated translations between data/
information models
Model based approach

• Declarative programing model
• declaring objective through models
• based on UML/SysML capability of defining domain specific

“declarative” languages
• automated code generation form declarative models

Producer
data
model

Declarative
data model

Consumer
data
model

Provided data
model

Code generation from
declarative model

www.arrowhead.eu

fPVN

25

Interoperability engineering
• Design time and run time

• Write a situation specific and dedicated translator
• Use of general translator
• Autonomous translator engineering

• Identifying service contract mismatches
• Inject protocol and encoding translation
• Inject missing consumer capabilities
• Inject servitisation of legacy API

www.arrowhead.eu

Dynamic interoperable interface injection

www.arrowhead.eu

fPVN

27

Expected Impact
The advancement beyond both scientific and industrial state of
the art will be achieved by integrating three technological building
blocks composing the pillars for interoperability
Integrating the building blocks’ functionalities will enable the
value creation related to the following:

• Asset information models
Interoperable asset models enabled by unlocking digital and non-digital legacy OT
asset information

• New technical functionality
Autonomous handling of information between machines and people within PVNs,
based on standards and open concepts

• Improved digital transformation management
Evolvable interoperability accelerating uptake and change management of value
network digitalization further along its lifecycle.

www.arrowhead.eu

fPVN

28

Validation and verification of common technologies in
4 industrial production domains and 8 use-cases

#1.6: Automotive Battery Innovation fPVN

#2.6: Humans in the interoperable System

#1.7: Interoperable intelligent management of production lines: Towards Model-based Enterprise

#2.7: Aircraft Health Management System (AHMS) for Trend Monitoring, Predictive

#1.8: System-Driven Modularisation and Digitalization for Offshore Renewables

#1.9 Pump Station Engineering

 #2.9: Digital Twins that enable higher performance by interoperability in pulp mills & carton board mills

#3.9: Interoperability for technical information exchange in process industry

www.arrowhead.eu fPVN

29

Conclusion
The ambition is that machines autonomously can translate between

major standard data models!

We are starting June 1 2023

Close collaboration with AIMS5.0 project lead by Infineon

