

Probabilistic Risk and Performance Assessment

AFRY RELIABILITY TOOLS / AFRY X JUSSI-PEKKA PENTTINEN

PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

Jussi-Pekka Penttinen

- Tampere University of Technology: M.Sc. (2005)
 - Thesis: Analysis of failure logic using simulation
- Ramentor Oy: Chief Architect (2004-2020)
 - Development of ELMAS tool
 - Research of reliability and risk analysis methods
- Tampere University: D.Sc. (2020)
 - Dissertation: <u>An Object-Oriented Modelling Framework</u> <u>for Probabilistic Risk and Performance Assessment of</u> <u>Complex Systems</u>
- AFRY: Senior Adviser, Product owner (2020-)
 - Reliability analysis and risk assessment: Research, development and application to various targets
- Comments and questions:
 - jussi-pekka.penttinen@afry.com, 040-8222629

PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

Background – AFRY

- AFRY is a European leader in engineering, design, and advisory services, with a global reach
 - 17 000 employees globally (2 800 employees in Finland)
 - Offices in >40 countries (28 offices in Finland)
- In February 2019 ÅF and Pöyry joined forces
 - In November 2019 ÅF Pöyry launched a new common brand, AFRY
- Mission: We accelerate the transition towards a sustainable society
- We are devoted experts in infrastructure, industry, energy and digitalisation, creating sustainable solutions for generations to come

4 2022-05-18 PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

Providing leading solutions for generations to come – Making Future

Background – AFRY's offering in six divisions

Infrastructure

- Transportation
- Buildings
- Project Management
- Water
- Environment
- Architecture & Design

Industrial & Digital Solutions

- Advanced Automation
- Connected Products
- Automotive Design & Engineering
- Food & Pharma
- Specialised Technical Services
- Systems Management

Process Industries

- Bioindustries
- Chemicals
- Pulp, board, paper & tissue
- Mining & Metals
- Smart solutions: Health & Safety, Sustainability, AFRY Smart Site & digitalisation

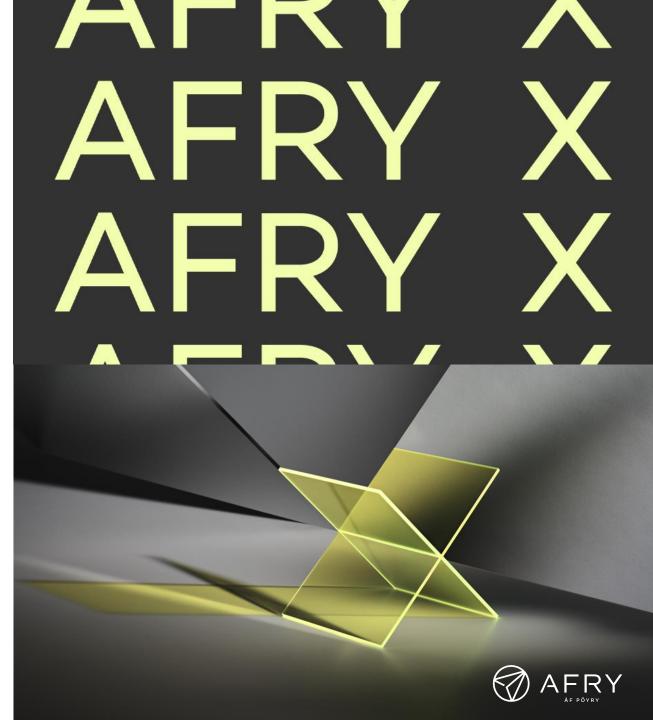
Energy


- Renewable
 Energy &
 Thermal Power
- Hydro
- Transmission & Distribution
- Nuclear
- Contracting

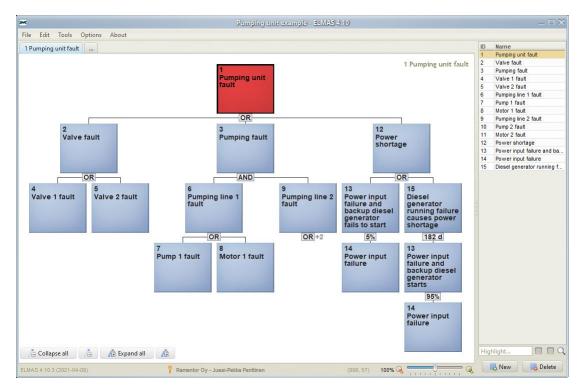
Management Consulting

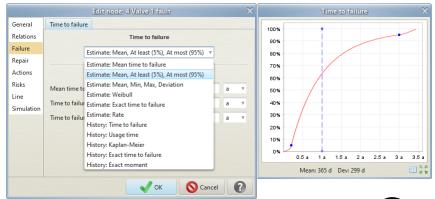
- Energy Sector
- Bioindustry Sector
- Market Analysis
- Strategic Advice
- Operational Excellence
- M&A and Transactions

AFRY X

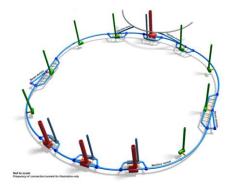

- Digital Products
- Digital Advisory
- Digital Services: Analytics, AI & Big data, Cyber Security, Design, Software dev't & integration, Digital Quality

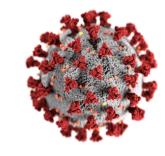
PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT


Background – AFRY X


- AFRY X was set up as a new division as of 2022
 - AFRY X is a digital powerhouse that aims to be a digital leader in industrial IoT, AI, design and cyber security
 - More than 800 digital experts (100 in Finland)
 - Net sales about 100 million euros
- With basis in AFRY's deep sectoral expertise, AFRY X will develop and sell software in a SaaS business as well as offer cutting-edge digital services
- AFRY acquired Ramentor Oy in October 2020
 - The development of Ramentor's reliability and risk management software continues in AFRY X division

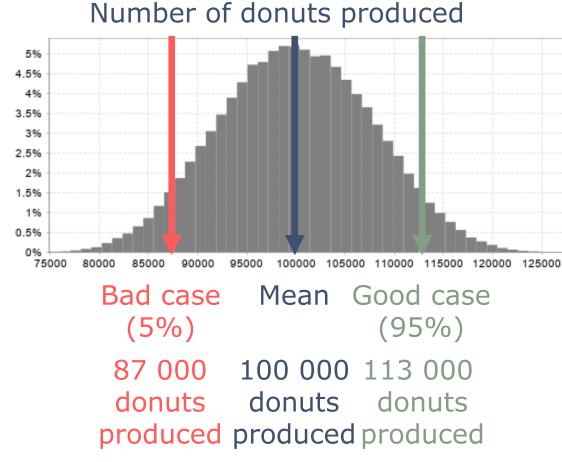
Background – ELMAS Fault Tree Analysis


- Graphical presentation of logical tree diagram
 - Efficient handling of large trees (>10 000 faults)
- Advanced failure logic and time distribution definitions
 - Standard logic gates, probabilities and delays included
 - Create failure and repair distributions based on experts' best estimates or by importing history data (distribution fitting)
- Stochastic discrete event simulation (DES)
 - Various risk and reliability analysis results based on simulation
- Include qualitative analysis for risk prioritization
 - Failure modes and effects and criticality analysis (FMECA), PSK 6800, or customized domain specific criticality classification
- Include dynamic process modelling
 - Process phase/mode changes, buffers/other delays, etc.
- Automatized fault tree creation / criticality classification



Probabilistic modelling

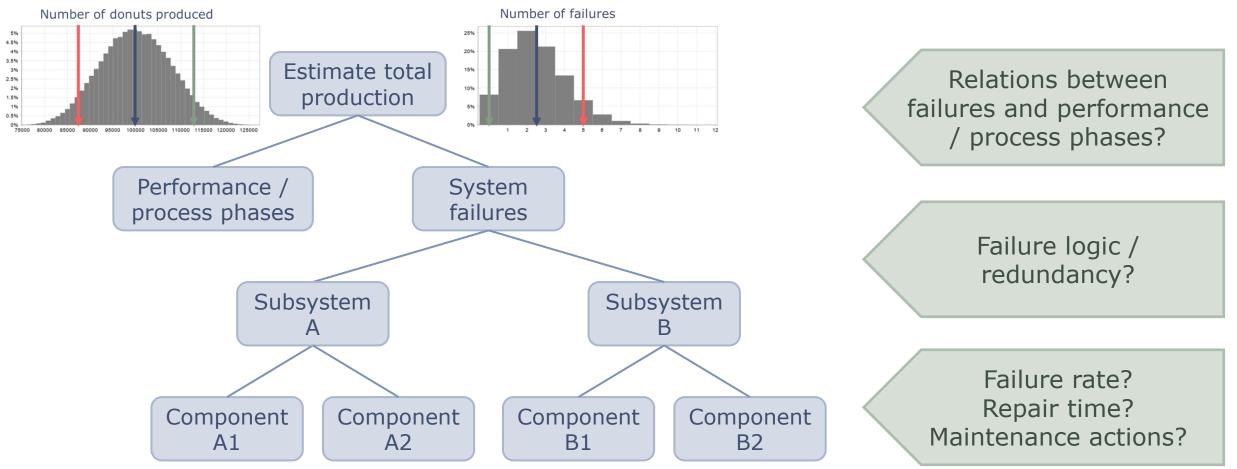
CERN particle accelerator that delivers collisions for scientific research


Production line that makes donuts

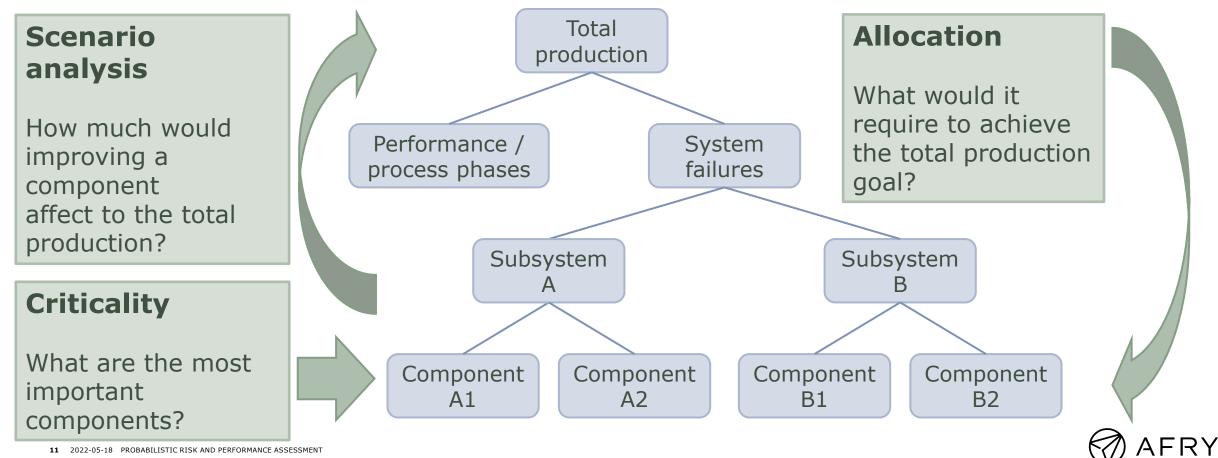
Spreading of the Coronavirus Lotto, in which 7 numbers are drawn from a pool of 40 numbers

Availability goal for a future circular collider (FCC-ee) is 80% In average 100 000 donuts are produced per day The value of the basic reproduction number (R0) in Finland was 2.4 In average 18 million lines are needed to match 7 numbers

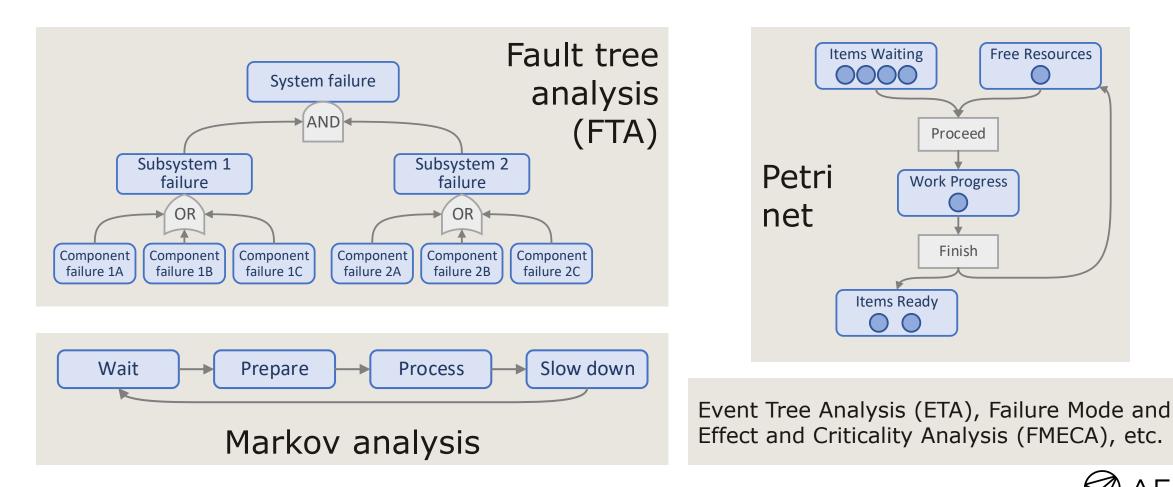
Probability distribution



Number of failures



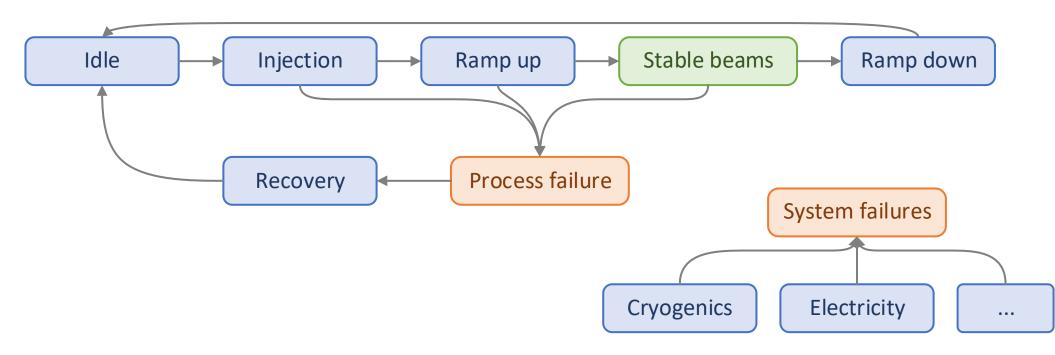
Reliability and performance model



Model \rightarrow Understanding \rightarrow Decisions

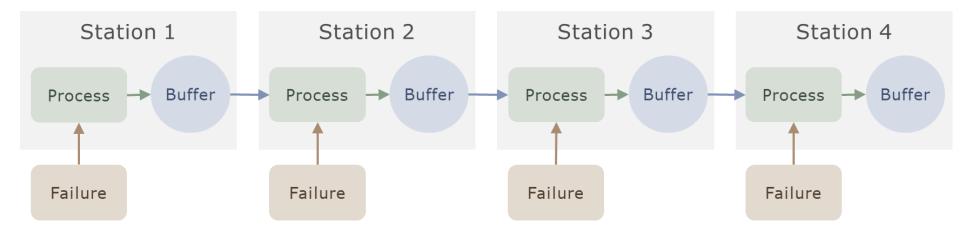
11 2022-05-18 PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

Traditional risk assessment techniques



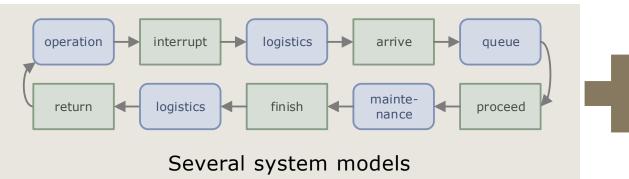
Process modelling – Case: CERN

Process modelling – Case: CERN

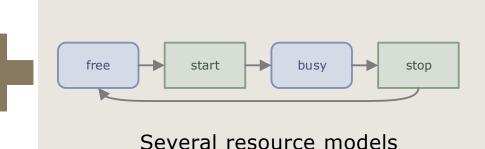


Process modelling – Case: Manufacturing

- Demo case: Four stations in a sequence
 - $-\,$ Each station has a process unit and a buffer
 - Failures can stop the process
 - Maximum number of items is defined for a buffer

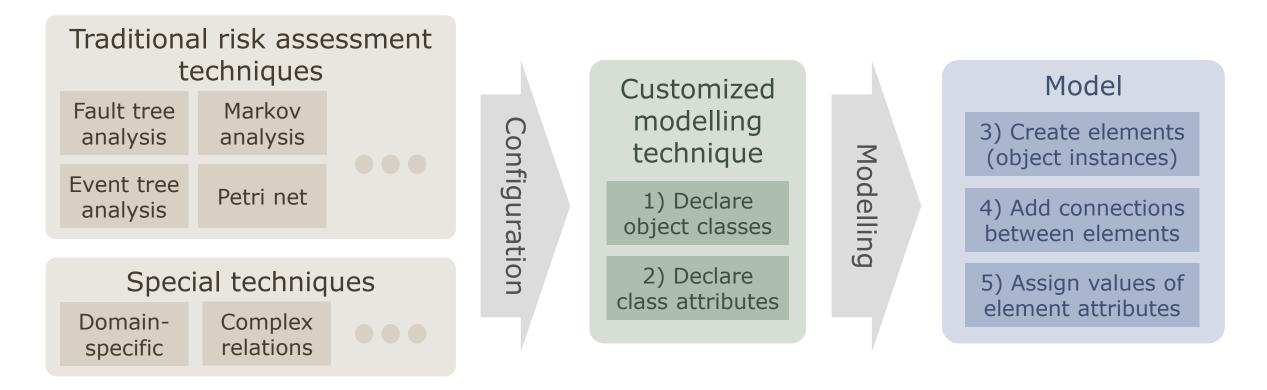

- Results
 - Total number of items manufactured
 - Buffer level progress of each station
 - Delays because of empty/full buffer

Fleet maintenance modelling


- State model for each system of the fleet:
 - Interrupts caused by failures/preventive maintenance
 - $-\,$ Logistics delays to and from maintenance
 - Queueing if maintenance resources not available
 - Duration of maintenance operations

Fleet model that combines several systems and resources

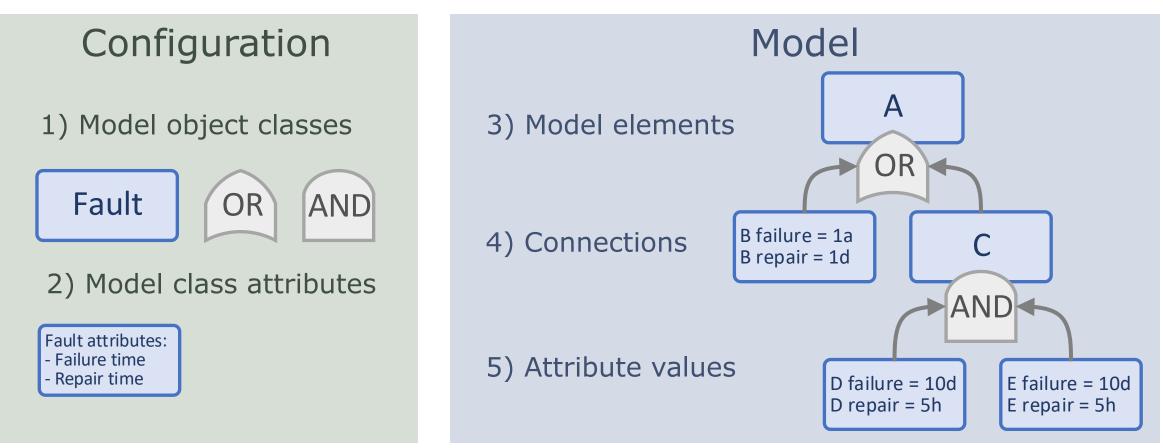
- State model for each maintenance resource:
 - Model start and stop of maintenance operations
 - Different model for each resource type: workshops, critical tools, human resources, spare parts...
 - Different resource needs of maintenance operations



The framework is named as Analysis of Things (AoT) to emphasize its universal nature and wide application possibilities.

PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

AoT – Object-oriented modelling framework



The framework is named as Analysis of Things (AoT) to emphasize its universal nature and wide application possibilities.

PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

AoT – Object-oriented model (FTA)

The framework is named as Analysis of Things (AoT) to emphasize its universal nature and wide application possibilities.

PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

AoT – Tabular model definition format

A reliability analysis expert configures the modelling approach

- 1) Declare classes
- 2) Declare attributes

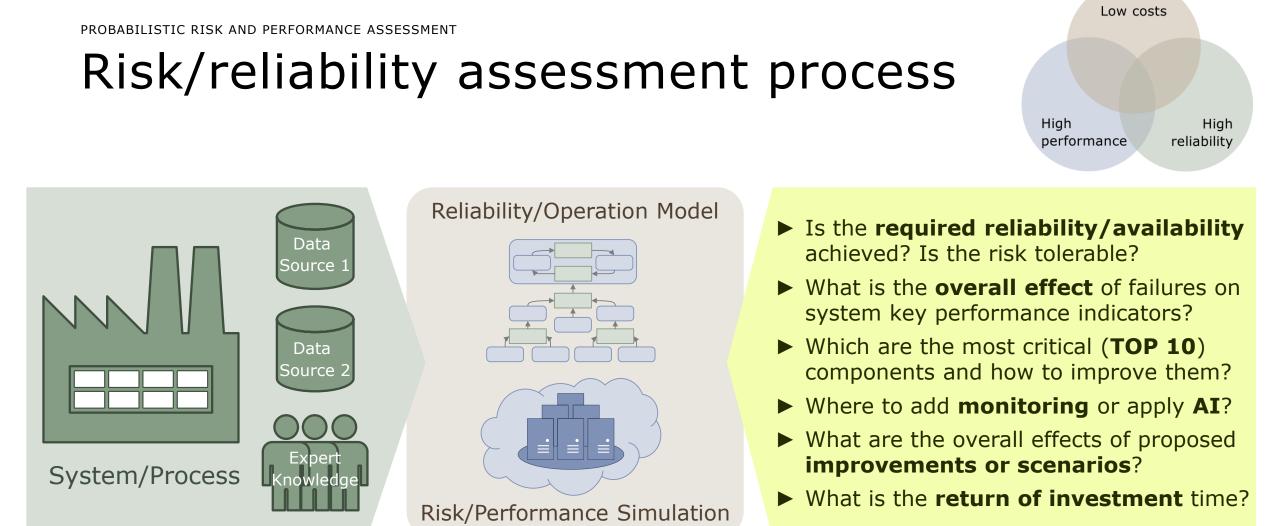
User creates a model with a software tool or by using automatized import

- 3) Create model elements
- 4) Add connections
- 5) Assign attribute values

	Α	В	С			
	Fault	class	Element			
	OR	class	Element			
	AND	class	Element			
	Fault/failure	attribute	Duration			
	Fault/repair	attribute	Duration			
	A,B,C,D,E	instance	Fault			
	A/child	connect	OR			
	OR/child	connect	B,C			
	B/failure	=	1a			
	B/repair	=	1d			

Application of the created model

- Store the model to a database
- Share the model with other analysis tools/users
- Simulate analysis
 results


PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

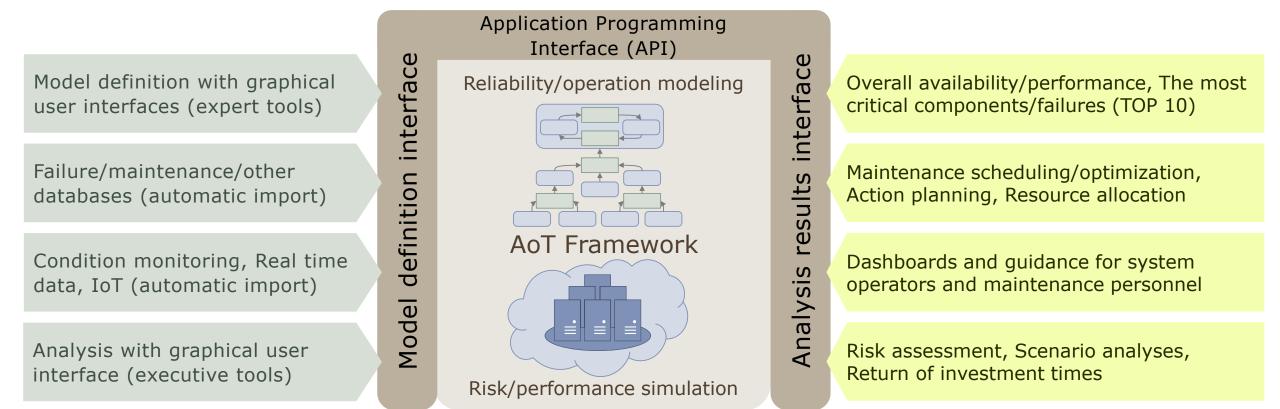
Risk/reliability management

Low costs

HighHighperformancereliability

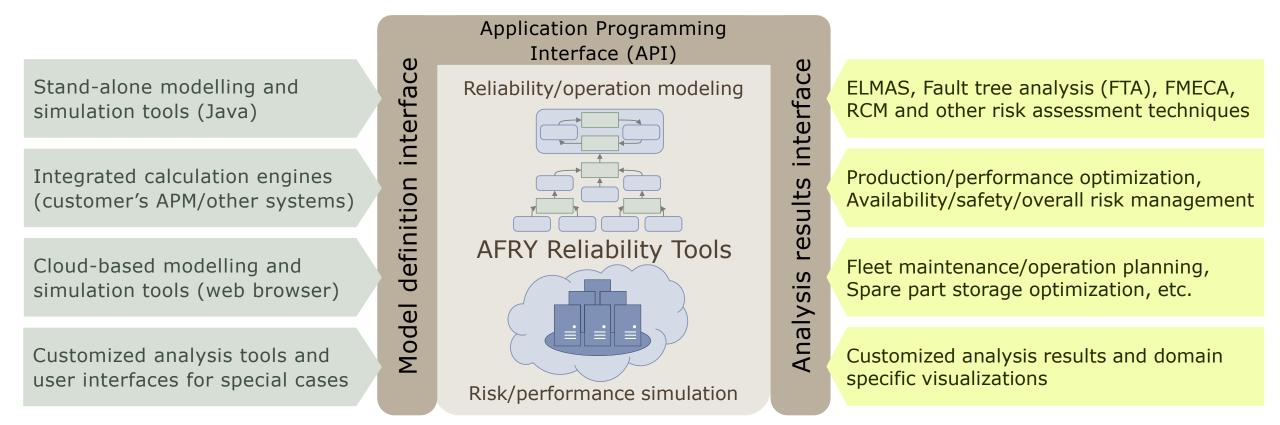
System \rightarrow Model \rightarrow Analysis \rightarrow Results

Questions or comments?

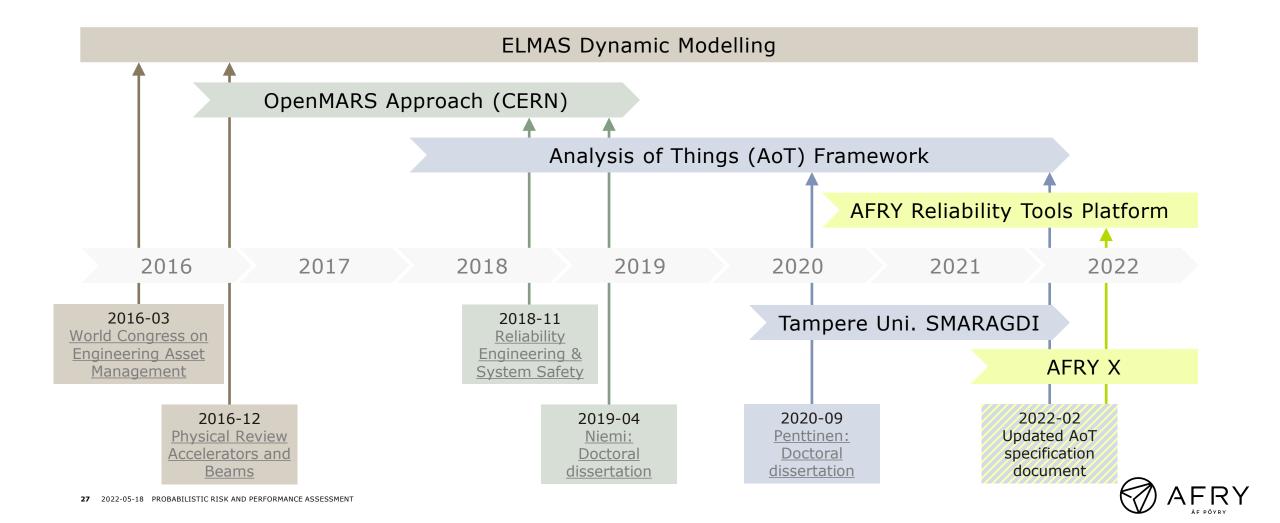

AoT Framework

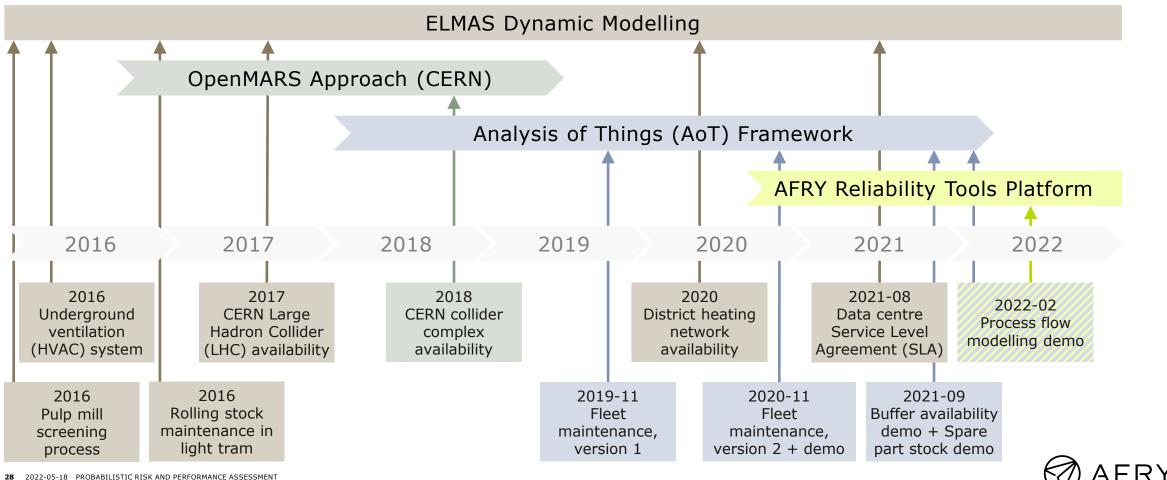
AFRY RELIABILITY TOOLS / AFRY X JUSSI-PEKKA PENTTINEN

AoT Framework

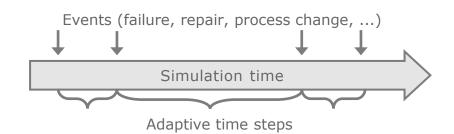

The framework is named as Analysis of Things (AoT) to emphasize its universal nature and wide application possibilities.

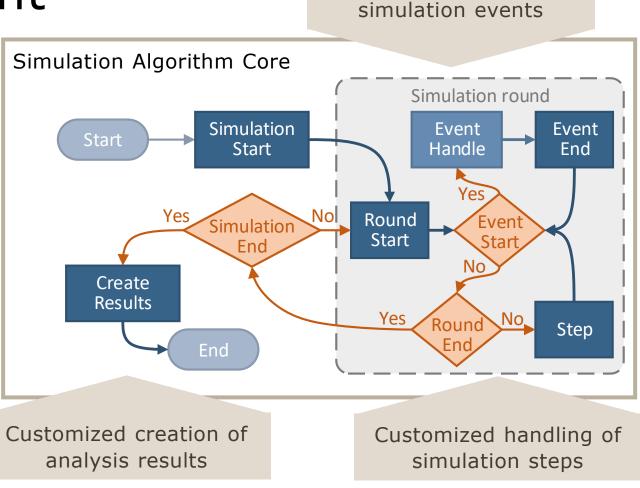
Data \rightarrow API \rightarrow Model \rightarrow Analysis \rightarrow API \rightarrow Results


AFRY Reliability Tools Platform


 $\mathsf{Tool} \to \mathsf{API} \to \mathsf{Model} \to \mathsf{Analysis} \to \mathsf{API} \to \mathsf{Solution}$

Timeline – Publications


Timeline – Applications

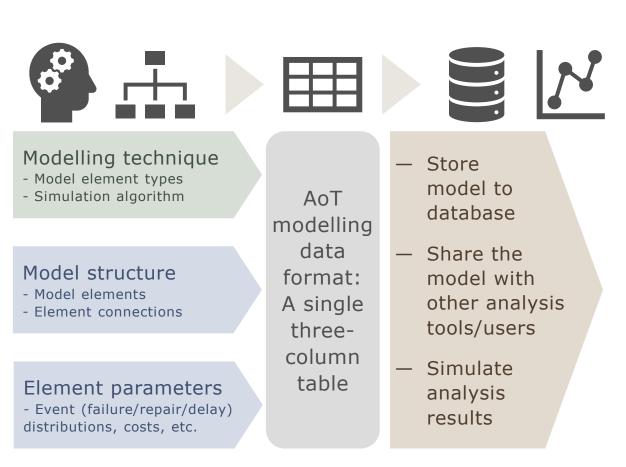


2022-05-18 PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

AoT – Flexible simulation algorithm development

- Customized simulation algorithms are formed by applying template method pattern
- The algorithm core contains template methods
 - The core includes also handling of simulation rounds, event queue and result data collection
- Customized content fills the core algorithm
 - Customized event handling
 - Customized simulation time step handling
 - Customized creation of analysis results

Customized handling of


AoT – Flexible modelling data format

- A single table combines the model information

- Includes modelling technique definition
- Includes model element/structure definition
- Includes model parameter definition

Tabular definition of object-oriented models

- Plain, compact and platform-independent format
- $-\,$ Simple and efficient storing of models to database
- Enables manual model editing (Excel)
- The three-column table lists definition rows
 - Column A: The object of the definition
 - Column B: Keyword indicates the type of the definition
 - $-\,$ Column C: The value defined for the object
- Special keywords for analysis tool UI definition
 - Localisation/translations, input fields, result charts, \ldots

AFRY RELIABILITY TOOLS - ANALYSIS OF THINGS

Tabular format for model definition

- Modelling technique definition keywords
 - class: Create an element class
 - container: Class elements can contain other elements
 - attribute: Class elements have an attribute
 - prototype: Create a sub element for class elements
- Model element structure definition keywords
 - instance: Create an element of a class
 - include: Include features to an element
 - connect: Connection to another element
- Element attribute value definition keywords
 - share: Share an attribute value with another element
 - add: Add a value to an attribute
 - assignment(=): Assign an attribute value

7		Y Reliability	Tools ELMAS	Stock	Fleet		Î
Y 1	AF PÖYRY gates/V	instance	OR				
2	nodes/V/gate	=	OR				
3	nodes/V/child	connect	gates/V			Mode	l element
4	gates/V/child	connect	nodes/V1			crea	tion and
5	gates/V/child	connect	nodes/V2			con	nections
6	nodes/V1/failure	include	DelayExp				
7	nodes/V1/failure/mean	=	1a				
8	nodes/V1/restoration	include	DelayExp			_	
9	nodes/V1/restoration/mean	-	1d				
0	nodes/V2/failure	include	DelayExp				
1	nodes/V2/failure/mean	-	1a				
2	nodes/V2/restoration	include	DelayExp				
3	nodes/V2/restoration/mean	-	1d				
4	gates/P	instance	AND				
5	nodes/P/gate	-	AND				
6	nodes/P/child	connect	gates/P				
7	gates/P/child	connect	nodes/P1				
8	gates/P/child	connect	nodes/P2				
9	gates/P1	instance	OR				
00	nodes/P1/gate	-	OR				
01	nodes/P1/child	connect	gates/P1				
02	gates/P1/child	connect	nodes/P1P				
.03	gates/P1/child	connect	nodes/P1M				
.04	nodes/P1P/failure	include	DelayExp		Fa	iluro	repair time
.05	nodes/P1P/failure/mean	=	15d				oution and
.06	nodes/P1P/restoration	include	DelayExp		U		ameters
07	nodes/P1P/restoration/mean	=	4h			pur	
08	nodes/P1M/failure	include	DelayExp				
.09	nodes/P1M/failure/mean	=	20d				

Tabular format for simulation algorithm

$\square \bigcirc Module - Simulation - v3 \qquad x \qquad + \\ \leftarrow \rightarrow \bigcirc \Rightarrow \qquad \Rightarrow \qquad \qquad$	com/aot/rows/15		ia 💆	Ĝ ¢=		× ⊂
	RY Reliabilit	y Tools ELMAS Stock Fleet				ŕ
36 DES/methodVoid [calculationProcess]		<pre>THIS.simulationStart(); do { THIS.roundStart(); while (true) { while (THIS.actionStart()) { THIS.actionHandle(); } if (THIS.roundEnd()) { break; } UNE stop();</pre>		-	nulat gorith core	nm
37 DES/methodVoid [simulationStart]	-	<pre>THIS.step(); } while (!THIS.simulationEnd()); COMBINATION.init('step');</pre>				-
38 DES/methodBoolean [simulationEnd]	-	return CURRENT_ROUND >= MAX_ROUNDS;				
39 DES/methodVoid[roundStart]	-	<pre>ACTIONS.clear(); // reset the actions queue ACTIONS.add(0, THIS); // temp action for roundStart CURRENT_ITHE = 0; COMBINATION.clear(); for (ELEMENT element : GROUP_ELEMENTS('roundStart')) { element.roundStarted(); } for (ELEMENT element : GROUP_ELEMENTS('roundActivate')) { element.activate(); } for (ELEMENT element : GROUP_ELEMENTS('roundCheck')) { element.check(); } ACTIONS.startWait(GROUP_ELEMENTS('roundWait'), CURRENT_ITME); ACTIONS.startWait(GROUP_ELEMENTS('roundWait'), CURRENT_ITME); ACTIONS.add(MDOEL.getPeriodStep(), THIS);</pre>	Note: Without t ACTIONS.remo operations do r	ve and ACTI		
Jussi-Pekka Penttinen (<u>Logout</u>)		Admin		0 2021 <u>AFF</u>	Y Finland	<u>Oy</u>

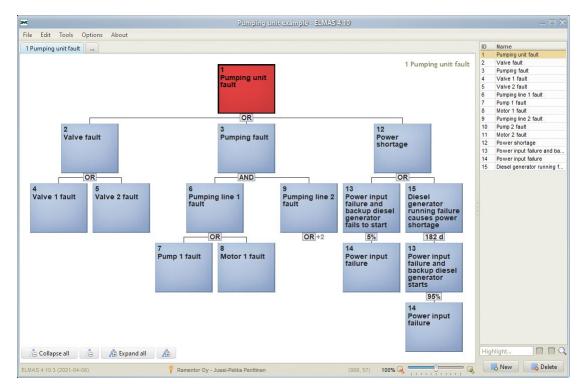
	Module - FTA – v1 >						
\rightarrow	C 🗗 https://reliabi	lity.afry.com/aot/r	ows/16 🖧	Z	ଓ ∣ ৫	œ	🥐 ·
D		AFRY Rel	iability Tools ELMAS Stock	Flee	t		
40				*** EL!	4AS ***		
41	Fault/failureCount	attribute	Integer				
42	Fault/faultTime	attribute	Duration				
43	Fault/failureMTB	attribute	Duration				
44	Fault/faultProb	attribute	Probability				
45	Fault/faultStart	attribute	Duration				
46	Fault/failureCount	simulate	round				
47	Fault/faultTime	simulate	round				
48	Fault/faultStart	simulate	mutable				
49	Fault/tag	add	roundEnd	To call round	roundEnde ends	ed() wher	na
50	Fault/tag	add	createResult		createRes ition ends	ult() whe	n a
51	Fault/methodVoid [notify]	-	<pre>if (THIS.isTrue()) { THIS.failureCount++; THIS.faultStart = CURRENT_TIME; } else { THIS.faultTime += CURRENT_TIME - THIS. faultStart; } for (ELEMENT parent : CONNECTIONS('parent')) { parent.activate(); } }</pre>				iodul e coi
52	Fault/methodBoolean [isTrue]	-	<pre>return THIS.getActive() == THIS.fault;</pre>				
53	Fault/methodVoid [toTrue]	=	<pre>if (!THIS.isTrue()) { THIS.state = THIS.fault; THIS.notify(); }</pre>				
54	Fault/methodVoid [toFalse]	=	<pre>if (THIS.isTrue()) { THIS.state = THIS.normal; THIS.notify(); }</pre>				
55	Fault/methodVoid [roundEnded]	-	<pre>if (THIS.isTrue()) { THIS.faultTime += CURRENT_TIME - THIS. faultStart; }</pre>				
56	Fault/methodVoid [createResult]	=	NUMBER count = THIS.END_MEAN_failureCount; THIS.failureMTB = count == 0 ? NEVER : (INTEGER)(SIMULATION_PERIOD / count); THIS.faultProb = (NUMBER)THIS. END_MEAN_faultTioN_PERIOD;				

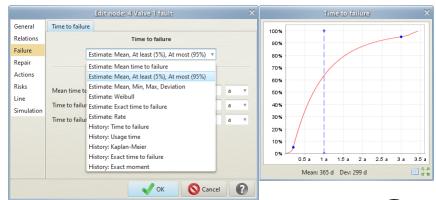
Publications and Specifications

- An Object-Oriented Modelling Framework for Probabilistic Risk and Performance Assessment of Complex Systems
 - The doctoral dissertation describes how the OpenMARS approach is developed further to be a generic framework for development of reliability analysis and risk/performance assessment tools
 - http://urn.fi/URN:ISBN:978-952-03-1635-8
- Modeling Future Hadron Colliders' Availability for Physics
 - The doctoral dissertation presents how ELMAS was applied in CERN to model the Large Hadron Collider (LHC) and how the development of the OpenMARS approach was started
 - http://urn.fi/URN:ISBN:978-952-03-1057-8
- An open modelling approach for availability and reliability of systems
 - The peer-reviewed journal article presents the OpenMARS approach
 - <u>https://researchportal.tuni.fi/en/publications/an-open-modelling-approach-for-availability-and-reliability-of-sy-2</u>
- An Open Modelling Approach for Availability and Reliability of Systems OpenMARS
 - The OpenMARS specification in CERN document server
 - <u>https://cds.cern.ch/record/2302387</u>

Questions or comments?

Reliability Tools

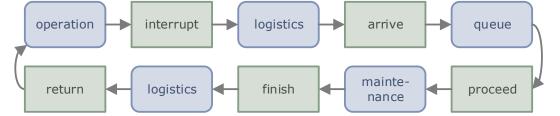

AFRY RELIABILITY TOOLS / AFRY X JUSSI-PEKKA PENTTINEN

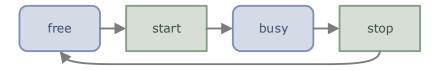


AFRY RELIABILITY TOOLS

ELMAS FTA

- Graphical presentation of logical tree diagram
 - Efficient handling of large trees (>10 000 faults)
- Advanced failure logic and time distribution definitions
 - Standard logic gates, probabilities and delays included
 - Create failure and repair distributions based on experts' best estimates or by importing history data (distribution fitting)
- Stochastic discrete event simulation (DES)
 - Various risk and reliability analysis results based on simulation
- Include qualitative analysis for risk prioritization
 - Failure modes and effects and criticality analysis (FMECA), PSK 6800, or customized domain specific criticality classification
- Include dynamic process modelling
 - Process phase/mode changes, buffers/other delays, etc.
- Automatized fault tree creation / criticality classification

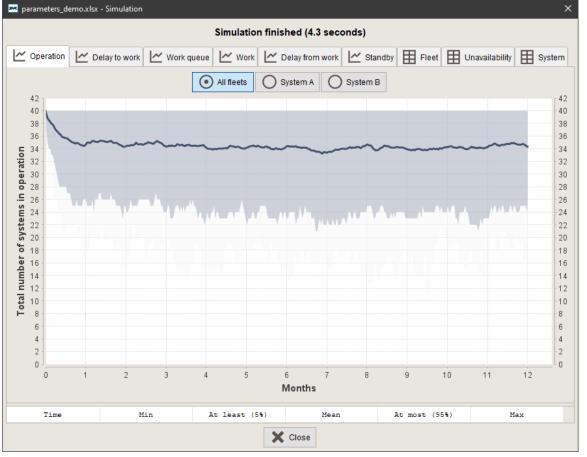



Demo tool: A fleet of similar systems (1/2)

- A system can be a vehicle or any other item that has failures and requires maintenance
- Reliability and maintainability simulation:
 - Failure modes of each system?
 - MTTF / failure distribution of each failure mode?
 - MTTR / repair distribution of each failure mode?
 - Preventive maintenance schedule?
- Maintenance resource simulation:
 - Number of maintenance persons/workshops available?
 - Logistics delays to and from maintenance?
 - Priority order of operations if queueing required?
- Availability simulation:
 - How many systems are available?
- A Fleet demo tool was created at 2020-Q4

State model for each system:

- Interrupts caused by failures and preventive maintenance
- Logistics delays to and from maintenance
- Queueing if maintenance resources not available
- Duration of maintenance operations



State model for each maintenance resource:

Start and stop of maintenance operations

Demo tool: A fleet of similar systems (2/2)

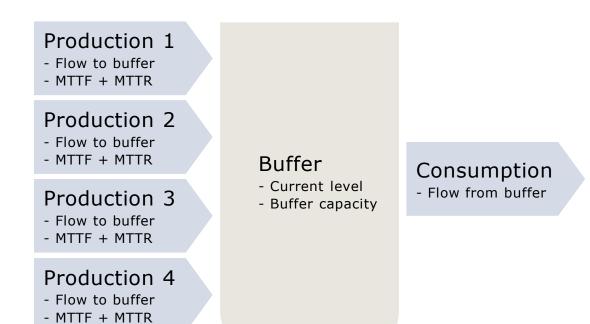
parameters_demo.xlsx - Fleet Demo General A System A B System B Systems of a fleet System name System A Number of systems in use [1-100 systems] 20 Number of standby systems [0-100 systems] Failure 1 (minor) Failure 1: Name Minor failure (internal) Failure 1: Mean time to failure [1-1000/∞ days] 30 Failure 1: Mean time to repair [0-100 hours] Failure 1: Mean delay before a repair start [0-100 hours] Failure 1: Mean delay after a repair finish [0-100 hours] Failure 1: Mean delay for a standby system [0-100 hours] Failure 2 (major) Failure 2: Name Major failure (external) Failure 2: Mean time to failure [1-1000/∞ days] 180 48 Failure 2: Mean time to repair [0-100 hours] Failure 2: Mean delay before a repair start [0-100 hours] 12 Failure 2: Mean delay after a repair finish [0-100 hours] Failure 2: Mean delay for a standby system [0-100 hours] Service 1 (minor) Service 1: Name Minor service (internal) Service 1: Interval of service operations [1-1000/co days] 30 Service 1: Mean duration of a service [0-100 hours] Service 1: Mean delay before a service start [0-100 hours] Service 1: Mean delay after a service finish [0-100 hours] Failure 1: Mean delay for a standby system [0-100 hours] Service 2 (major) Service 2: Name Major service (external) Service 2: Interval of service operations [1-1000/co days] 180 Service 2: Mean duration of a service [0-100 hours] 32 Service 2: Mean delay before a service start [0-100 hours] Service 2: Mean delay after a service finish [0-100 hours] Service 2: Mean delay for a standby system [0-100 hours]

Save

Start simulation...

X Load

X Close


imulation

(n

38 2022-05-18 PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

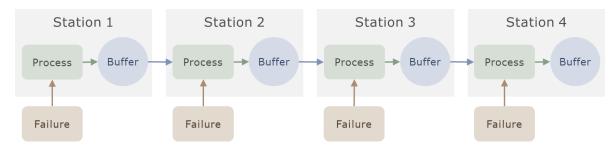
Demo tool: Buffer level simulation (1/2)

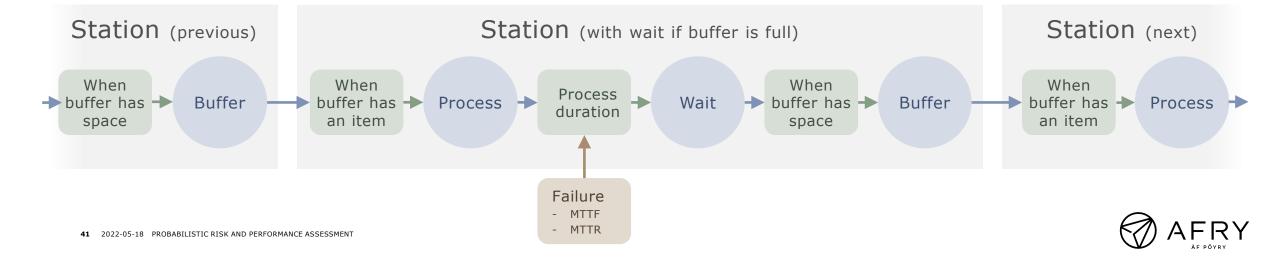
- Several production lines, which each have:
 - Flow to the buffer (1/day)
 - Mean time to failure/restoration (MTTF + MTTR)
- A buffer unit, which has:
 - A current buffer level
 - Buffer capacity (maximum buffer level)
- A consumption element, which has:
 - Flow from the buffer (1/day)
- Stochastic simulation + Analysis results:
 - Mean buffer level
 - Availability/Unavailability (% of time the buffer is empty)
 - Total flow through the buffer
 - $-\,$ The loss of flow because the buffer is empty
- Buffer level simulation demo tool was created at 2021-Q3

Demo tool: Buffer level simulation (2/2)

💌 Bu	uffer De	mo (EN) – (Calculation										×
					Cal	culation fini	shed (1.6	9 seconds)				
Ľ~	Buffer	🗠 тор	P H Faults										
		C	Buffer level	O Unav	ailability	O Availab	lity O	Current rate	O Total flo	w 💽 T	otal loss		
	550												550
oty	500												500
e ml	450												450
feris	400												400
e buf	350												350
se th	300												300
ecau	250												- 250
ow b	200												200
The loss of flow because the buffer is empty	150								_				150
loss	100												100
The	50												- 50
	0												0
	0	1	2	3	4	5	6 Months	7 8	9	10	11	12	
	Ti	me	Мі	n	At 1	Least (5%)		Mean	At most	: (95%)		Max	
						>	Close						

Buffer: Level at start [0-100]	-	I.	I	1	I	1	1	1	1	1	100
Buffer: Max level [100-600]	T									1	
Consumption: Flow from buffer [0-100 1/day]		I	I	1	1	I	I	I	I	1	35
Productio	n li	ne	s								
Production 1: Flow to buffer [0-100 l/day]		T	I	I.	I		I	1	I	1	10
Production 1: Failure [1-100 days]			I	1	I		I	I	1	1	7
Production 1: Repair [0-100 hours]		I.		1	I	1	I	I	1	1	24
Production 2: Flow to buffer [0-100 l/day]		T	I	1	I	1	I	I	1	1	10
Production 2: Failure [1-100 days]		1	I	1	I	1	I	I	1	1	7
Production 2: Repair [0-100 hours]		I.		1	I		I	I	1	1	24
Production 3: Flow to buffer [0-100 l/day]		T	I	1	I	1	I	I	I.	1	10
Production 3: Failure [1-100 days]		-	1	1	T		I	I	1	1	17
Production 3: Repair [0-100 hours]		I.		1	T		I	I	1	1	24
Production 4: Flow to buffer [0-100 l/day]		T	I	1	T		I	I	1	1	10
Production 4: Failure [1-100 days]			I	1	T		I	I	1	1	7
Production 4: Repair [0-100 hours]		I		1	I	1	I	I	I	1 1	24
Simula	tio	n									
Simulation period [1-120 months]		T	I	1	I	1	I	I	1	1	12
Simulation rounds limit [1-1000]	-	T	I	I	I	1	I	I	1	1 1	100


Simulation


^{40 2022-05-18} PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT

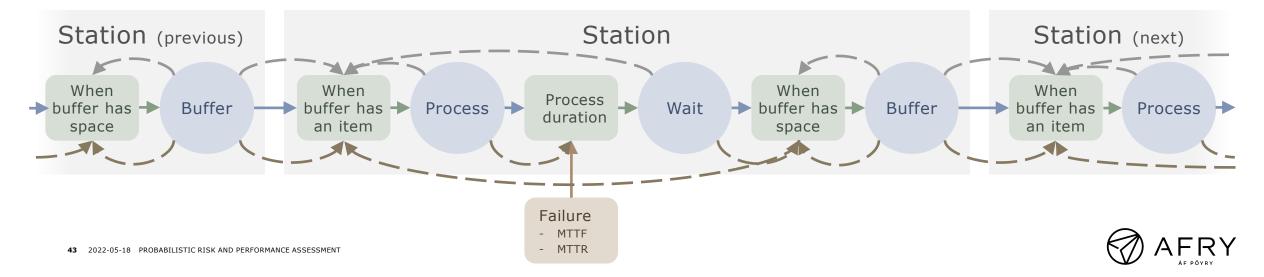
Demo tool: Process flow simulation (1/3)

Demo case: Four stations in a sequence

- $-\,$ Each station has a process unit and a buffer
- Failures can stop the process
- Maximum number of items is defined for a buffer
- The last buffer (Station 4) describes how many items have been processed

Demo tool: Process flow simulation (2/3)

How long it takes to produce 20 items when failures can stop the process?

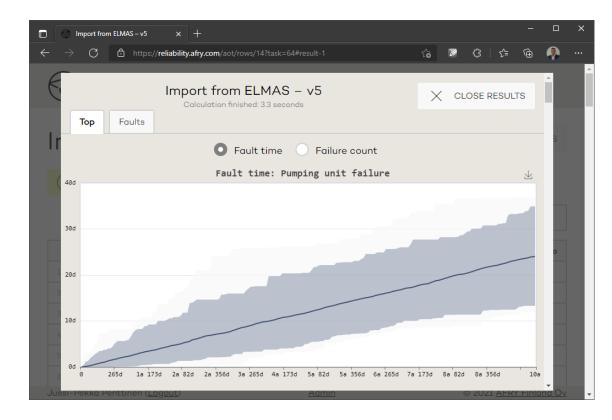

Demo tool: Process flow simulation (3/3)

Triggers

- 1) Check next transition when a place gets an item
- 2) Check process restart when wait ends
- 3) Check wait end when buffer is not full anymore

Conditions

- 4) Wait can end if buffer has space (=is not full)
- 5) Process can start when previous buffer has an item, process is not already ongoing, and an item is not waiting for next buffer


Demo tool: User license handling

		× +			~ L .	-		×				
		ility.afry.com/admin/groups/3		tê 💆	ଓ ∣ ৫⊧	<u>ن</u>	•					
	FRY	AFRY Reliability Tools	ELMAS	Stock Fle	et							
Edit g	group	– Ship fleet	со	OO RET	URN TO GRO	OUPS LIS	бт					
Group	Group Members Licenses Delete Properties											
Add new	Add new member											
Select a user	Select a user V											
+ ADD T	+ ADD THE SELECTED USER											
Group m	Group members											
First name	Last name	Email	Edit user	Remove member]							
Product	Admin	product.admin@ramentor.com										
Karianne	Mohr	karianne.mohr@example.com										
Clifton	Goyette	clifton.goyette@example.com										
Jussi-Pekka Pe	enttinen (<u>Logou</u>	<u>t) Ad</u>	min		© 2021 <u>AFR</u>	/ Finland	<u>d Oy</u>					

Ø Users – Admin → C ট	× +	com /admin/users	
	RY AF	RY Reliability Tools ELMAS	Stock Fleet
Admin	– Use	rs	ROUPS A PRODUCTS
	IEW USER		C Filter users
First name	Last name	Email	Groups
Joel	Turpela	joel.turpela@afry.com	AoT module handlers
Jussi-Pekka	Penttinen	jussi-pekka.penttinen@afry.com	AoT module handlers
Product	Admin	product.admin@ramentor.com	Analysis of Things (AoT) users Paper factory co Ship fleet co
Product	View	product.view@ramentor.com	Analysis of Things (AoT) users Paper factory co
Group	Admin	group.admin@ramentor.com	Analysis of Things (AoT) users
Group	View	group.view@ramentor.com	Analysis of Things (AoT) users
Basic	User	basic.user@ramentor.com	Analysis of Things (AoT) users
Jessie	Hill	jessie.hill@example.org	-
Oren	Kutch	oren.kutch@example.org	-
Karianne	Mohr	karianne.mohr@example.com	Ship fleet co
Emil	Adams	emil.adams@example.org	-
Madalyn	Shields	madalyn.shields@example.net	-
Roselyn	Jerde	roselyn.jerde@example.com	-
Reese	Heaney	reese.heaney@example.net	-
Bessie	Shanahan	bessie.shanahan@example.com	-
Herbert	Dach	herbert.dach@example.com	-
Marcos	Altenwerth	marcos.altenwerth@example.org	-
Nikita	Ortiz	nikita.ortiz@example.org	-
Clifton	Goyette	clifton.goyette@example.com	Ship fleet co
ussi-Pekka Pentti	nen (<u>Logout</u>)	Admin	© 2021 AFRY Finland Oy

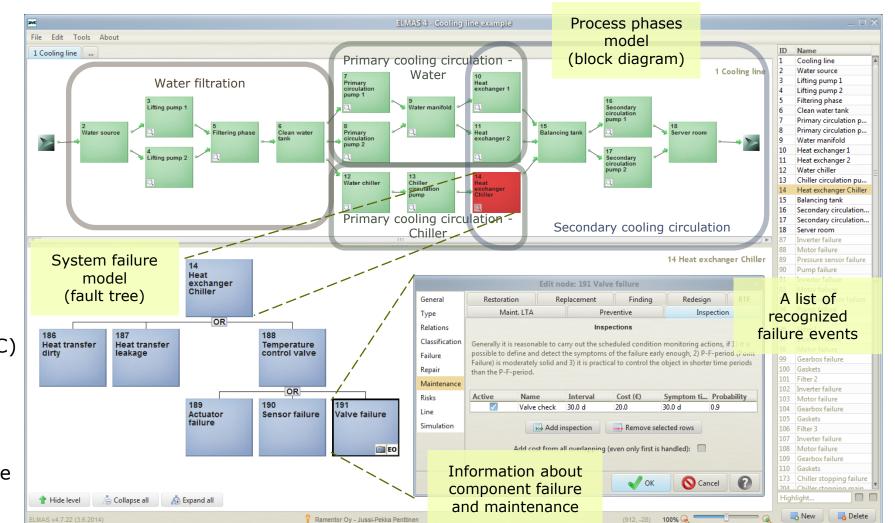
FISA

Demo tool: Web portal for cloud simulation

	Import from ELMA Calculation finished: 3.3 se		;		X CL	OSE RESULTS
Тор	Faults					
ID	Title	Gate	MTBF	Failures	Fault time	Fault time (%)
TOP	Pumping unit failure	Vote	82d 12h	44.2	24d 0h	0.66%
v	Valve failure	OR	178d 7h	20.5	21d 2h	0.58%
V1	Control valve 1 failure		353d 16h	10.3	10d 22h	0.3%
V2	Control valve 2 failure		356d 19h	10.2	10d 4h	0.28%
р	No pumping	AND	201d 15h	18.1	1d 18h	0.048%
P1	Pumping line 1 fault	OR	8d 16h	420.8	77d 12h	2.1%
P1P	Pump 1 failure		14d 23h	243.7	40d 15h	1.1%
P1M	Motor 1 failure		20d 2h	181.5	37d 6h	1%
P2	Pumping line 2 fault	OR	8d 18h	416.4	77d 10h	2.1%
P2P	Pump 2 failure		15d 6h	239.3	39d 16h	1.1%
P2M	Motor 2 failure		20d 2h	181.4	38d 3h	1%
PW	Power shortage - Backup generator does not start	5%	1a 266d	5.8	1d 3h	0.032%
PWI	Power input failure		29d 23h	121.8	25d 17h	0.71%

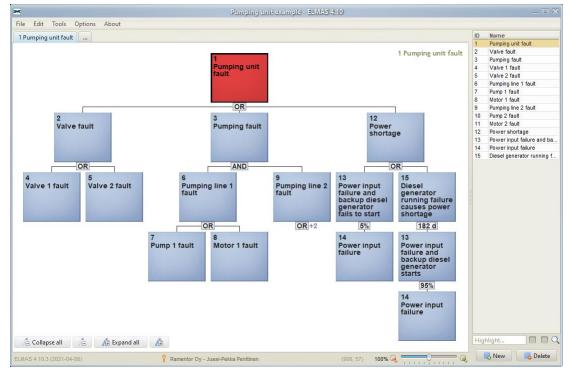
Questions or comments?

ELMAS

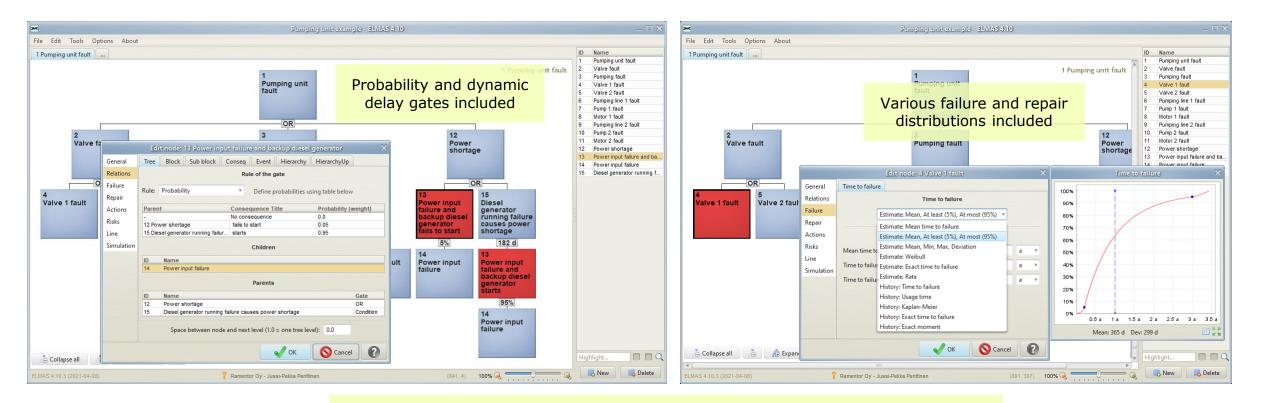

AFRY RELIABILITY TOOLS / AFRY X JUSSI-PEKKA PENTTINEN

EVENT LOGIC MODELLING AND ANALYSIS SOFTWARE

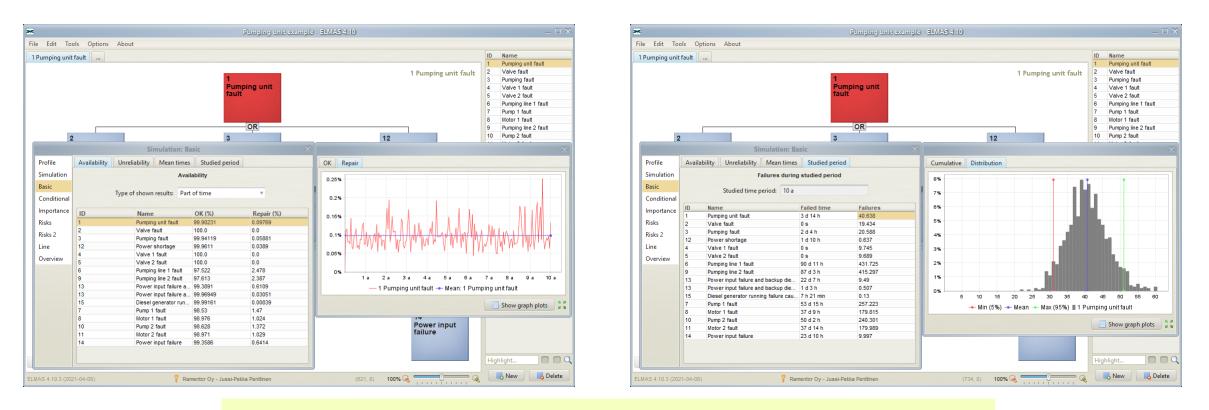
ELMAS 4.9


- Modelling and simulation of system/component failures
- Analysis combines maintenance data with expert knowledge
- Design, improvement and optimization of reliability and availability
- Risk assessment
- Analysis of Life-cycle-costs (LCC)
- Fault Tree Analysis (FTA)
- Failure Modes, Effects, and Criticality Analysis (FMECA)
- Reliability Centered Maintenance (RCM)

ELMAS 4.9 – Advanced Fault Tree Modeling


- Graphical presentation of logical tree diagram
 - Efficient handling of large (>1000 faults) trees
- Advanced failure logic and time distribution definitions
 - Standard logic gates, probabilities and delays included
 - Create failure and repair distributions based on experts' best estimates or by importing history data (distribution fitting)
- Stochastic discrete event simulation (DES)
 - For systems that are too complex to be modelled using analytical techniques
- Customizable criticality classification
 - Include qualitative analyses and risk prioritization, such as Failure modes and effects and criticality analysis (FMECA)
- Dynamic modelling
 - Include dynamic process phase/mode changes
 - Include chains of consequences and dynamic delays
 - Include maintenance schedule and special actions

EVENT LOGIC MODELLING AND ANALYSIS SOFTWARE


ELMAS 4.9 – Failure logic and distributions

ELMAS includes advanced fault tree modelling features. For comparison with other software packages, see slides 15-17 from <u>PowerPoint Presentation - cern.ch</u>)

ELMAS 4.9 – Stochastic simulation

ELMAS includes an efficient simulation algorithm. For example, ELMAS calculation time 2.1 seconds vs. Isograph ~35 minutes (see slide 12 from <u>PowerPoint Presentation - cern.ch</u>)

ELMAS 4.9 – Customizable criticality classification


		Edit node: 4 Valve 1 f	ault	3	×	
General	Description (FMEA)	RPN Criticality Classification				
Relations		RPN				
Classification	Severity:	Moderate (6)		Product/item operable, but may cause		
Failure Repair		ct of the potential failure mode on the the system, or the customer	e	rework/repair/damage to equipment.		
Actions	Occurrence:	Moderately low (4)	۳	Few failures (1 in 2 000)		
Risks Line	Likelihood that a speci mode occurs	fic cause or mechanism of a failure				
Simulation	Detection:	Low (7)	v	Low chance the audit/inspection will detect a		
Simulation		spection to detect a potential I consequential failure mode		potential cause/mechanism and subsequent failure mode.		
	Expected Severity:	Moderately low (5)	۳	Product/item operable, but may cause slight	Ξ	
		of the effect of the potential failure her assembly, the system, or the	A V	inconvenience to related operations.		
	Expected Occurrence:	Low (3)		Very few failures (1 in 15 000)		
	Expected likelihood the failure mode occurs	at a specific cause or mechanism of a				
	Expected Detection:	Moderate (5)	Ŧ	Moderate chance the audit/inspection will		
		of audit/inspection to detect a potentiand consequential failure mode		detect a potential cause/mechanism and subsequent failure mode.		
	Current RPN:	168				
	Expected RPN:	75			Edit customized classific	
	Difference:	93		fields for qualita	tiv	e analys
				V OK O Cancel		

			Opti	015	
Personal	Description (FME	A)	RPN	Expanded RPN	Criticality Classification
Model	Factors	Tabs		Analysis Node	Analysis Comb.
Nodes	Factor title	Factor ti	p		Data key
Tools	Exposure			the persons exposed to the I f maintenance personnel	hazard and AnalysisExposure
Classification	Hazard	A level o	f possible	thread to a person's health	AnalysisHazard
Usage profile Production profile	Severity			e effect of the potential failure sembly, the system, or the cu	
Tasks	Occurrence	Likelihoo mode oc		pecific cause or mechanism	of a failure RpnOccurrence
Actions Risks	Detection			t/inspection to detect a poter and consequential failure m	
Draw Interfaces	Expected Severity		the next l	ness of the effect of the poten higher assembly, the system	
Other	Expected Occurrence		d likelihoo re mode o	d that a specific cause or me ccurs	ExpectedOccurrence
	Expected Detection		d probabil cause/me		
	Feasibility		ity of corre e or lower		
	Safety risks	A safety health.	risk refers	s to a possible hazard to a po	PskSafety
	Environmental risks	olant site. PskEnvironmental			
	Production weight	the nt which is weighting. PskProductionWeight			
		sific	atio	n fields and	PskProductionLoss
	special Guality cost			ion express	m having to PskQuality
	Repair or conseq. cost	e of PskRepair			
	Time between failures		tween failt educe effe		PskFailures
	Severity (S)	FmeaSeverity			
	Occurrence (O)	FmeaOccurrence			
	Detection (D)	How to p	rearct		FmeaDetection

EVENT LOGIC MODELLING AND ANALYSIS SOFTWARE

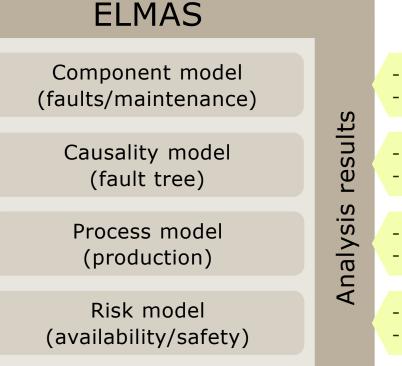
ELMAS 4.9 – Dynamic modeling

0

Cancel

OK OK

53 2022-05-18 PROBABILISTIC RISK AND PERFORMANCE ASSESSMENT


ELMAS – Levels of Modelling and Analysis

- Failure and maintenance data
- Condition monitoring data
- System/component hierarchy
- Expert knowledge (causality)

definition

Model

- Time-dependency of events
- Production phases/modes
- Break/downtime/repair costs
- Hazards

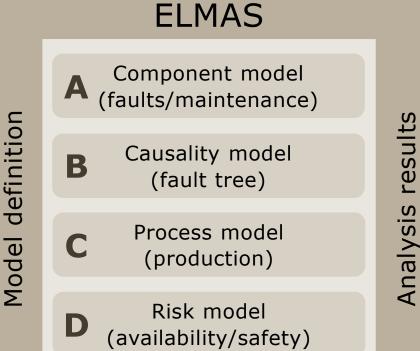
Application Programming Interface (API) + Graphical User Interface (GUI) - Component reliability

- Maintenance schedule

- System reliability / availability
- Criticality / importance (TOP 10)
- Overall production / bottlenecks
- Total requirements / expectations
- Overall risk / LCC / Investments
- Maintenance optimization

Data \rightarrow API/GUI \rightarrow ELMAS \rightarrow API/GUI \rightarrow Results

ELMAS – Levels of Modelling and Analysis


A Failure and maintenance data Condition monitoring data

B System/component hierarchy Expert knowledge (causality)

C Time-dependency of events Production phases/modes

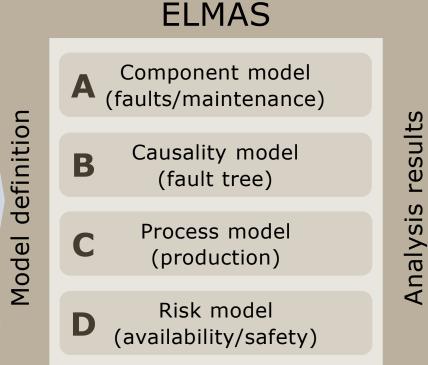
D

Break/downtime/repair costs Hazards

Application Programming Interface (API) + Graphical User Interface (GUI) A Component reliability Maintenance schedule

B System reliability / availability Criticality / importance (TOP 10)

C Overall production / bottlenecks Total requirements / expectations


Overall risk / LCC / Investments Maintenance optimization

Data \rightarrow API/GUI \rightarrow ELMAS \rightarrow API/GUI \rightarrow Results

ELMAS – GUI, Import/Export and API

- 1) Model creation with Graphical User Interface (ELMAS GUI)
- Import of failure / maintenance history and component hierarchy (Excel format)
- Asset Performance
 Management (APM) or
 other system integration
 (ELMAS API)

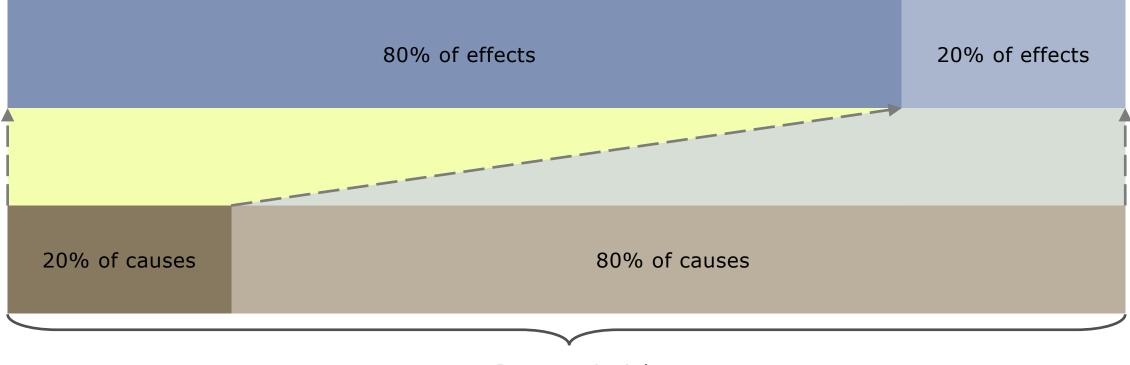
Application Programming Interface (API) + Graphical User Interface (GUI) 1) Visualization of results with Graphical User Interface (**ELMAS GUI**)

- 2) Export of analysis results /
 - cause-consequence relation model structure
 - (Html / Excel format)
- Analysis results / failure modes shown in Asset Performance Management (APM) or other system (ELMAS API)

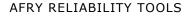
Data \rightarrow API/GUI \rightarrow ELMAS \rightarrow API/GUI \rightarrow Results

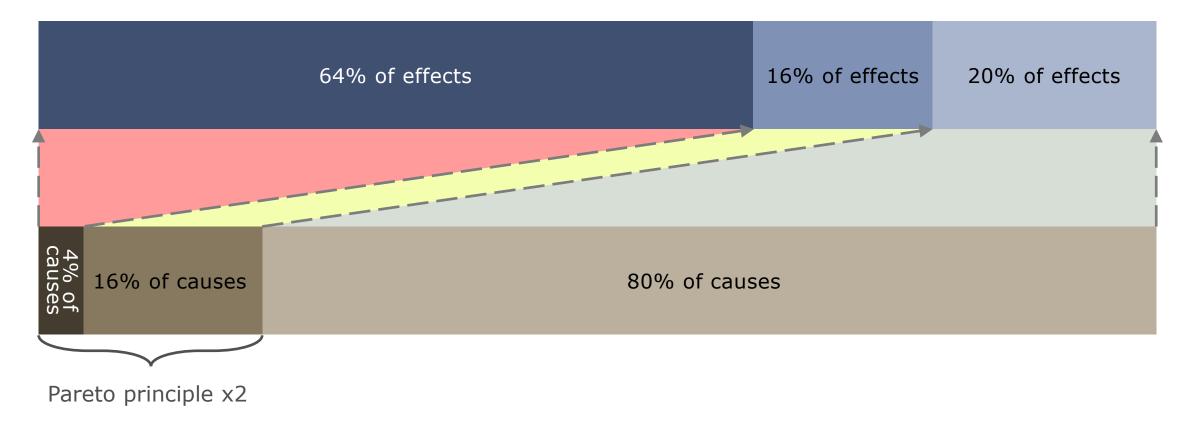
Questions or comments?

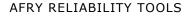

AFRY RELIABILITY TOOLS / AFRY X JUSSI-PEKKA PENTTINEN

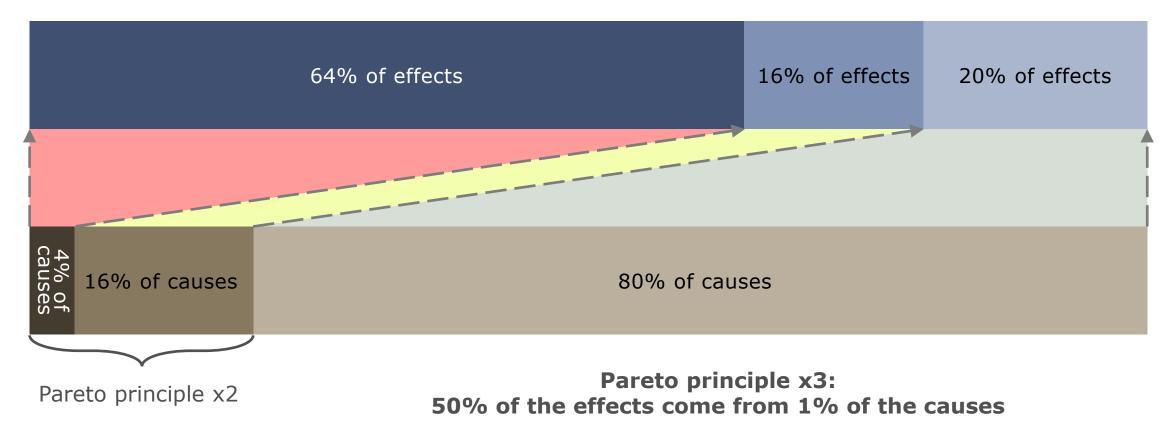


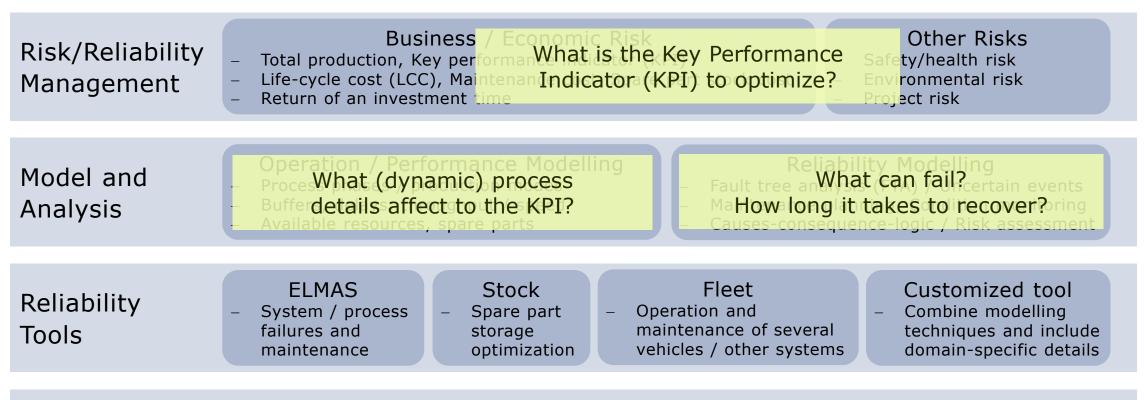
"For many events, roughly 80% of the effects come from 20% of the causes"


Vilfredo Pareto









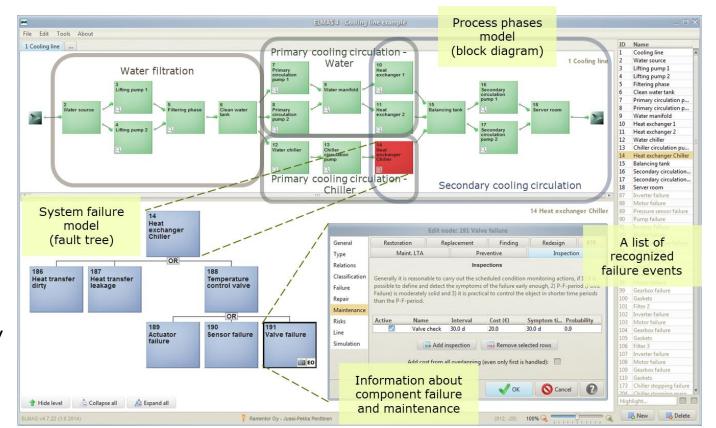
Risk/Reliability Management	Business / Economic RiskOther Risks- Total production, Key performance indicator (KPI)- Safety/health risk- Life-cycle cost (LCC), Maintenance cost, Spare part stock cost- Environmental risk- Return of an investment time- Project risk									
Model and AnalysisOperation / Performance Modelling Process phases / production modes Buffers, delays, throughput / speed 										
Reliability Tools	ELMAS – System / process failures and maintenance	- Stock - Spare part storage optimization -	Fleet Operation and maintenance of several vehicles / other systems	 Customized tool Combine modelling techniques and include domain-specific details 						


Failure / Maintenance / Process Data + Expert Knowledge

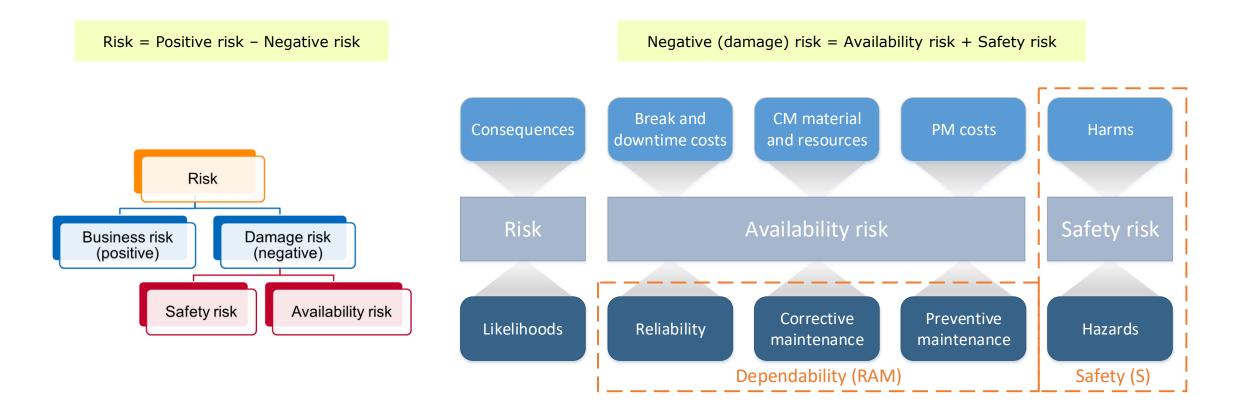
Failure / Maintenance / Process Data + Expert Knowledge

Failure / Maintenance / Process Data + Expert Knowledge

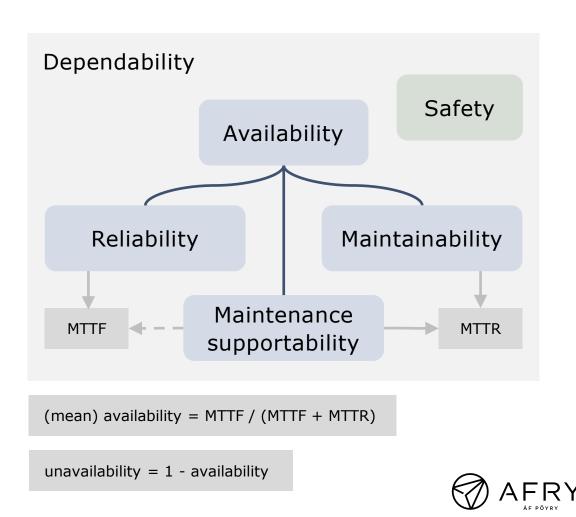
Model-Based Systems Engineering (MBSE)


Risk recognition and classification (qualitative)	Maintenance / reliability modelling (quantitative)	System operation / behavioral modelling	History data capitalization / Condition monitoring	Risk / performance assessment
 ✓ Fault Tree Analysis (FTA) ✓ Failure Modes And Effects And Criticality Analysis (FMEA / FMECA) ✓ Criticality classification and risk prioritization 	 ✓ Failure / repair time estimation (probability distribution) ✓ Reliability Centered Maintenance (RCM) ✓ Downtime, break and repair cost modelling 	 ✓ Process flow / block diagram ✓ Dynamic production phase / logic modelling ✓ Fleet interaction modelling ✓ Buffer capacity modelling 	 ✓ Failure / maintenance history import ✓ Production / stress profile definition ✓ Automatic fault tree creation ✓ Resource and spare part costs import 	 ✓ Discrete Event Simulation (DES) ✓ Scenario analysis ✓ Maintenance optimization ✓ Risk-Informed Decision Making (RIDM)

Model-Based Systems Engineering (MBSE) – Maturity increases

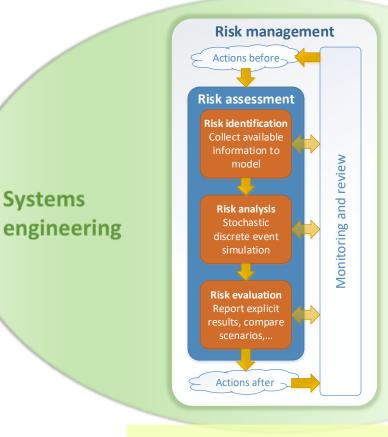

Probabilistic Risk/Performance Assessment

- ELMAS tool for failure modelling
 - Systematic approach to understand potential consequences and risks of component failures
 - Quantitative reliability/availability/risk results
 - Include dynamic process phases/modes
 - Include maintenance planning (RCM)
 - Include criticality classification (FMECA)
- More than 15 years of experience in challenging reliability/risk analyses
 - CERN Particle Collider Availability Model
 - AFRY Reliability Management
 - Other <u>References</u> and <u>Customer cases</u>
- New approach adapts to special reliability modelling needs
 - Based on a CERN research: <u>OpenMARS</u>
 - Published in RESS journal
 - Developed further in a doctoral dissertation


Risk Assessment – Terminology

Risk Assessment - Dependability

- Dependability
 - $-\,$ The ability to perform as and when required
- Availability
 - $-\,$ The portion of time the item performs as expected
 - $-\,$ Formed by the ratio of failure and restoration times
- Reliability
 - How often failures occur?
 - Mean time to failure (MTTF), failure distribution
- Maintainability/Maintenance supportability
 - How long it takes to restore an item back to operation?
 - Mean time to restoration (MTTR), repair time distribution
 - Maintainability = How simple it is to repair the item
 - Maintenance supportability = Performance of the maintenance organization (can affect also to failures, e.g., wrong maintenance/repair)


Risk Assessment – Standard definitions

– Risk

- Effect of uncertainty on objectives
- Objectives can have different aspects (such as financial, health and safety, and environmental goals) and can apply at different levels (such as strategic, organization-wide, project, product and process).
- Risk management
 - Coordinated activities to direct and control an organization with regard to risk.
- Risk assessment
 - 1) Risk identification find, recognize and describe risks
 - 2) Risk analysis comprehend the nature and determine the level of risk

ISO GUIDE 73:2009

3) Risk evaluation – compare analysis results with risk criteria to determine whether the risk and its magnitude is acceptable or tolerable

ISO 31000:2009, NASA SE 2007

Questions or comments?

AFRY X

AFRY RELIABILITY TOOLS

Making Future

