

Semantum.fi

Automatic Generation of a Simulation-based Digital Twin From a 3D Plant Model

Gerardo Santillán

Customer Manager gerardo.santillan@semantum.fi

Digital Twin

A digital replica of a plant, which contains information of the:

- Structure
- Dynamics of how the devices or processes operate

Digital Twin: Structure information

A digital replica of a plant, which contains information of the:

 Structure, which can be obtained from plant design material

Piping & Instrumen- Control Application

3D Plant Models

Simulation-based Digital twin

Digital Twin: Dynamics of the plant

A digital replica of a plant, which contains information of the:

 Dynamics, which can be simulated using first-principles simulation models of the plant

Physical Plant Digital Twin

Simulation Model of the Plant

Tracking simulator

Simulation-based Digital Twin: Applications

Model development in process industry

Automatic Simulation Model Generation from 3D Plant Model

Automatic Simulation Model Generation from 3D Plant Model

Enabling Technologies

3D to Simulation: Enabling Technologies

AutoCAD Plant 3D™

An industry-specific toolset for plant design and engineering to create P&IDs and integrate them into a 3D plant design model.

Apros 6[™]

A modelling tool for highfidelity dynamic process simulation.

Apros[®] is a registered trademark of Fortum and VTT http://www.apros.fi

Modeling Factory™

Engineering Automation Services

Modeling Factory is a cloud-based service for managing creation and use of engineering assets throughout the plant lifecycle.

Different **Modeling Factory Workrooms** can be used e.g. to:

- Automatically generate simulation models from engineering data sources.
- Configure and use Digital Twins.
- Manage and automate collaborative multisimulation for testing.
- More!

Implementation Example: Simulation-based Digital Twin of a Laboratoryscale Water Heating Process

* This work has been carried out at Aalto University as part of the Engineering Rulez Project.

Laboratory Water Heating Process

Automatic Model Generation

- Automatic model generation in 3D Plant Model Broker is based on Simantics Constraint Language.
- AutoCAD Plant 3D model is used to retrieve geometrical data of:
 - Equipment
 - Piping
 - Pipes, elbows and tees.
 - Points
 - Connections

Simulation Model Results

Simulation Model Results

G. Santillán Martínez, S. Sierla, T. Karhela, J. Lappalainen, and V. Vyatkin, "Automatic Generation of a High-Fidelity Dynamic Thermal-hydraulic Process Simulation Model from a 3D Plant Model," *IEEE Access (Under Review)*, 2018.

Simulation Model Results

G. Santillán Martínez, S. Sierla, T. Karhela, J. Lappalainen, and V. Vyatkin, "Automatic Generation of a High-Fidelity Dynamic Thermal-hydraulic Process Simulation Model from a 3D Plant Model," *IEEE Access (Under Review)*, 2018.

Simulation model synchronization with the process

Tracking simulation results

Semantum Live Virtual Twin visualization

Live Virtual Twin 3D Visualization through Autodesk Forge™

Simulation-based Virtual Twin of a Lab-scale Heat Production Plant

Enabled by Autodesk Forge & Semantum Modeling Factory

Interface overview

Hotpots description

Hotpots navigation

Hotspot

Application case: Predictive Transient Simulation

Transient prediction

Production transients are caused by changes on the plant states due to:

- External disturbances
- System malfunctions
- Production set point changes

Predicting the plant's transient response is critical for ensuring that:

- the changes are safe (e.g. system stability)
- the production remains efficient

Reliable transient prediction can only be achieved through dynamic simulation!!

Transient prediction with Digital Twin

Reduction of Simulation-based Digital Twins development time and cost

- Automatic model generation dramatically reduces model development and maintenance time and costs.
- OPC UA reduces system integration effort
- Utilizing the 3D plant model for DT visualization reduces development time and costs

Current Model Development Workflow

Our Solution: Engineering Automation

Automatic model generation available during early process design

 3D Plant Model Broker can be utilized already during early process design phases when the 3D plant models are available.

Available also for P&ID

 Results of simulation models automatically generated improve when other engineering data sources are combined.

Simulation-based Digital Twin: Applications

